• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2012 Fiscal Year Annual Research Report

不動点理論およびその周辺の非線形問題

Research Project

Project/Area Number 21540189
Research InstitutionKyushu Institute of Technology

Principal Investigator

鈴木 智成  九州工業大学, 工学(系)研究科(研究院), 教授 (00303173)

Co-Investigator(Kenkyū-buntansha) 仙葉 隆  九州工業大学, 工学(系)研究科(研究院), 教授 (30196985)
吉川 美佐子  埼玉大学, 理工学研究科, 非常勤講師 (20444052)
加藤 幹雄  信州大学, 工学部, 教授 (50090551)
Project Period (FY) 2009-04-01 – 2013-03-31
Keywords不動点 / 非線形半群 / 自己稠密核
Research Abstract

Hilbert 空間における非拡大半群 (nonexpansive semigroup) の Browder 収束 (Bochner 積分を用いないタイプ) に関する係数条件について最終的な結論を得た。
本研究は 2003 年に研究代表者が始めたものである。研究の方向性としては、写像に関する条件の緩和、空間に関する条件の緩和、係数条件の緩和の3種類が主に考えられる。このうち、写像に関する条件の緩和は難しいことが予想され、また、空間に関する条件については未だ未解決である。しかしながら、空間に関する条件については、本問題よりもシンプルな非拡大写像 (nonexpansive mapping) 版ですら最終的な結論を得ていない。したがって、係数に関する条件について完全な決着を得たということは、現段階において、本問題は実質的に解決されたと言うことができる。
最終的に得られた係数に関する条件は (i) { t_n } の有界性と (ii) { a_n / (t_n - τ) } が任意の τ に関して 0 に収束するというものである。パラメータ t_n に関する収束が不要であるというのは研究代表者にとって驚きであり、ここまで拡張できるのであれば、 (ii) の条件ももっと弱くなりそうな直感があったが、条件 (ii) が最終的に残ったことも驚きであった。実数という概念は大変に素朴なものであるが、本研究を通して、この概念が内包する奥深さの一端を垣間見た気がする。
実際、順序数の概念を用いて、位相空間における自己稠密核 (perfect kernel) を理論的に求める方法をつくった。そしてこの方法を用いて、(ii) の必要十分条件が { t_n } を集合として考えた時に scattered であること、すなわち自己稠密核が空集合であることをつきとめた。

Current Status of Research Progress
Reason

24年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

24年度が最終年度であるため、記入しない。

  • Research Products

    (2 results)

All 2012 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (1 results)

  • [Journal Article] Browder's convergence for one-parameter nonexpansive semigroups2012

    • Author(s)
      Shigeki Akiyama, Tomonari Suzuki
    • Journal Title

      Canadian Mathematical Bulletin

      Volume: 55 Pages: 15-25

    • DOI

      10.4153/CMB-2011-071-9

    • Peer Reviewed
  • [Presentation] Some examples on p-uniform convexity and q-uniform smoothness

    • Author(s)
      Tomonari Suzuki
    • Organizer
      The Fourth International Symposium on Banach and Function Spaces 2012
    • Place of Presentation
      九州工業大学

URL: 

Published: 2014-07-24  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi