2009 Fiscal Year Annual Research Report
2次元 polynomial skew products の力学系の研究
Project/Area Number |
21540203
|
Research Institution | Tokyo Polytechnic University |
Principal Investigator |
中根 静男 Tokyo Polytechnic University, 工学部, 教授 (50172359)
|
Keywords | Axiom A / skew product / 危点集合 / saddle basic set / 安定多様体 / 不安定多様体 |
Research Abstract |
C^2のAxiom A polynomial skew productsの力学系について、DeMarco-Hruskaは主に2次の場合にかなり詳細に研究している。特に危点集合の集積点集合について、通常の集積点集合Aに加えて、point-wise accumulation set : Aptとcomponent-wise accumulation set : Accを定義して、それらの性質を調べている。昨年、DeMarco-Hruskaの論文に誤りが見つかった。彼女たちはsaddle setのbasic setsへの分解を考慮しなかったため、Apt=Accとなるための誤った特徴づけを与えていたのである。 この問題を考察する中で、危点集合の各連結成分がどれかひとつのsaddle basic setの安定多様体に含まれることがApt=Accとなるための必要十分条件であることを示すことができた。 同様の議論によって、危点集合と各saddle basic setの安定多様体との交わりがコンパクトであることがApt=Aとなるための必要十分条件であることが証明できると期待される。DeMarco-Hruskaでは既にApt=Aのひとつの特徴づけが与えられているが、われわれの特徴づけはApt=AccとApt=Aの特徴づけを、saddle basic setsの性質によって統一的に与えらるという利点がある。 Saddle basic setsの間には、その安定多様体と不安定多様体の交わりめ存在により順序が定義されるが、上記のような議論の中で、いろいろな順序関係によりAxiom A polynomial skew productsの力学系を分類するという興味深い問題も得られた。
|