2012 Fiscal Year Annual Research Report
Project/Area Number |
21740072
|
Research Institution | Kyoto University |
Principal Investigator |
久保 雅義 京都大学, 情報学研究科, 講師 (10273616)
|
Project Period (FY) |
2009-04-01 – 2013-03-31
|
Keywords | 逆問題 / 情報理論 / 確率微分方程式 / 推定理論 / Fisher情報量 |
Research Abstract |
現代の医学・工学などの分野で応用されている数学的な理論の代表例の一つとして,現象を記述する偏微分方程式を用いた順問題の研究がある.微分方程式の解の存在や一意性,与えられたデータに対する連続性等の順問題に対しては,様々な角度から解析されている.一方で応用科学として多くの分野と関連して現れる逆問題の解の構成に対する数学的研究は体系的には進んでおらず,様々な問題点が指摘されている. 本研究課題では,そのような問題点の一つとしてノイズが混入した状況下での逆問題の数学的取扱いについて解析を行った.数理モデルとしての微分方程式の解の一部の情報からその方程式の係数を決定するという逆問題の解の一意性,安定性などの基本的な適切性がノイズの影響下ではどのような枠組で成り立つのかを解析することは単に数学的重要性だけでなく,非破壊検査や断層撮影法等に現れる逆問題を適切に離散化し精度よく数値計算を行うために必要となっている.工学や医学など多くの分野と関連して現れる確率微分方程式で記述される入出力システムにおいて,解に相当する出力データの観測から入力信号を推定するという逆問題を取り上げ,この逆問題の解析手法の確立するための数理モデルを構築し解析を行った.具体的には,確率微分方程式の逆問題を,無限次元パラメータ推定の問題として定式化した.最近の研究成果により,未知入力をパラメータとすると,適切な仮定の下で確率微分方程式の解はパス空間上に統計モデルと呼ばれる確率分布族を定めることは示されている.無限次元版のパラメトリック推定理論として,Cramer-Raoの不等式と Fisher 情報量の無限次元拡張が,新しく定式化した枠組みの中で成立することは既に示した結果であるが,無限次元統計モデルである確率微分方程式の無限次元パラメータ推定問題に適用することを踏まえた最尤推定量の構成し成果を得た.
|
Current Status of Research Progress |
Reason
24年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
24年度が最終年度であるため、記入しない。
|