2022 Fiscal Year Annual Research Report
MOFを出発物質として用いた固体スーパーキャパシタ用新規電極材料の創製
Project/Area Number |
21F20072
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
山内 悠輔 国立研究開発法人物質・材料研究機構, 国際ナノアーキテクトニクス研究拠点, MANA主任研究者 (10455272)
|
Co-Investigator(Kenkyū-buntansha) |
LIU SHUDE 国立研究開発法人物質・材料研究機構, 国際ナノアーキテクトニクス研究拠点, 外国人特別研究員
|
Project Period (FY) |
2021-09-28 – 2023-03-31
|
Keywords | Porous materials |
Outline of Annual Research Achievements |
Our research has focused on developing MOF-derived materials for energy storage and conversion applications with improved electrochemical performance. Through various synthesis methods, including direct carbonization, template-assisted synthesis, and chemical activation, we have prepared MOF-derived carbon-based materials with high specific surface area, pore volume, and conductivity, which are crucial factors for enhancing electrochemical performance in energy storage devices. For example, wevhave used a self-templating method to prepare hollow ordered mesoporous carbon (HOMC) materials with high N-doping, which have demonstrated superior electrochemical performance for supercapacitors. In addition, I have explored the potential of sulfides in energy storage and conversion, constructing a dual-modulated NiCo2O4@NiCo2S4 heterostructure and incorporating sulfur vacancies in CuCo2S4 hollow nanoarchitectures to achieve enhanced electrochemical performance. Furthermore, we have explored interfacial coupled engineering of plasmonic amorphous MoO3-x nanodots/g-C3N4 nanosheets for photocatalytic water splitting and photothermal conversion, developing highly active photocatalysts with excellent electrochemical performance. Overall, our research has demonstrated the great potential of MOF-derived materials, sulfides, and their heterostructures for energy storage and conversion applications, with publications in prestigious journals such as Energy Storage Materials, Carbon Energy, Advanced Energy Materials, and Small.
|
Research Progress Status |
令和4年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和4年度が最終年度であるため、記入しない。
|
Research Products
(4 results)