2022 Fiscal Year Annual Research Report
非イオン性界面活性剤の六方相により得られたフォトニックヒドロゲルの構造と特性
Project/Area Number |
21F20769
|
Research Institution | Hokkaido University |
Principal Investigator |
グン 剣萍 北海道大学, 先端生命科学研究院, 教授 (20250417)
|
Co-Investigator(Kenkyū-buntansha) |
LAMA MILENA 北海道大学, 先端生命科学研究科(研究院), 外国人特別研究員
|
Project Period (FY) |
2021-04-28 – 2023-03-31
|
Keywords | Photonic hydrogel / lamellar bilayers / self-assembly / mechanical properties / surfactant |
Outline of Annual Research Achievements |
In-situ structural analysis by USAXS have revealed that the deformation mechanisms within the hydrogels have been modified even by very small amounts of co-surfactants, meaning that the chemistry of the co-surfactant is of utmost importance in this system. Such observations have led us to hypothesize that interfacial interactions between the lamellae and the gel matrix between lamellae play an important role in the deformation mechanisms during uniaxial loading or cyclic loading by helping to dissipate more energy. We expect that such understanding will help to deepen our knowledge of this system in future studies involving the mechanical response under different loading conditions. The results of this research project have been summarized into an article, submitted to the journal ACS Omega (currently under review). Thus, this research project will be published online soon. Thanks to the novelty of the work, other fundamental questions are expected to be elucidated especially regarding the mechanical behavior of this type of hydrogel. Unfortunately, USAXS conditions were not suitable to obtain any data at solution state and the SAXS machine available at the university did not give good results (even with a custom-made sample-holder) due to a lack of beam power.
|
Research Progress Status |
令和4年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和4年度が最終年度であるため、記入しない。
|