• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Development and application of computational methods to illustrate the structural dynamics of proteins using cryoEM

Research Project

  • PDF
Project/Area Number 21H01050
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 13040:Biophysics, chemical physics and soft matter physics-related
Research InstitutionKeio University

Principal Investigator

Nakasako Masayoshi  慶應義塾大学, 理工学部(矢上), 教授 (30227764)

Project Period (FY) 2021-04-01 – 2024-03-31
Keywordsクライオ電子顕微鏡 / 蛋白質水和構造 / 機械学習 / ニューラルネットワーク / 酵素反応 / 蛋白質動力学 / 画像解析 / X線回折イメージング
Outline of Final Research Achievements

The structure analyses for enzyme-cofactor and enzyme-cofactor-ligand complexes were conducted using cryoEM. From the structures of enzyme-cofactor complex, we identified structures suitable for cofactor-binding and the pathway of cofactor to approach the final finding-site. We visualized the four and seven structures of the ternary complex in the initial and steady stages of the reaction and proposed structure-based reaction cycle. In addition, structure analysis for the ternary complex of a point-mutated enzyme revealed the interactions necessary for the structural changes.
We developed a neural-network to predict the hydration structures of proteins. The machine learning process was optimized, and the combinational use of the neural-network and empirical hydration prediction method enabled us to predict the hydration structures of membrane proteins.
In addition, for image processing, we proposed a metric used in X-ray diffraction imaging and applied to structure analyses.

Free Research Field

生物物理

Academic Significance and Societal Importance of the Research Achievements

クライオ電顕による酵素-補酵素複合体や酵素-補酵素-基質複合体の構造解析は、酵素反応や蛋白質-リガンド相互作用がどのようなメカニズムで生じているのかを探る端緒を与えるものであり、分子動力学計算やX線結晶構造解析では不可能な、水溶液中かつ反応中にある蛋白質の立体構造の可能性を高めたといえる。
近年、クライオ電顕構造解析が発展しているが、水和水分子の同定は依然として困難な課題である。機械学習水和構造予測法については、その精度を向上させ、膜蛋白質水和構造予測を可能にした。その結果、蛋白質相互作用や蛋白質運動における水分子の役割を描き出すことができ、創薬や蛋白質動力学研究の発展に寄与できると期待される。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi