2023 Fiscal Year Final Research Report
Creation and control of supercritical plasma flow for single-step synthesis of multifunctional highly-deliverable nanoparticles
Project/Area Number |
21H01249
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 19010:Fluid engineering-related
|
Research Institution | Tohoku University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
田中 学 大阪大学, 接合科学研究所, 教授 (20243272)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 流体工学 |
Outline of Final Research Achievements |
The electrode in contact with the plasma in supercritical carbon dioxide was improved and a system that could robustly and continuously sustain the plasma by means of high-voltage pulse discharge was developed. The molten electrode behavior was successfully visualized by applying appropriate optical treatment. Histograms of the size and composition of the nanoparticles were obtained and their characteristics were clarified. A new inhouse computation code was developed to simulate the electromagnetic thermofluid dynamics of plasma-nonionized gas-nanoparticle coexisting systems, and the fundamental mechanism of plasma-induced turbulence generation and nanoparticle formation processes were successfully elucidated. Extending the smoothed particle hydrodynamics method, numerical simulation methods were also developed for reproducing and analyzing metal melting, flow, solidification, compound formation, and oxide transport.
|
Free Research Field |
流体工学
|
Academic Significance and Societal Importance of the Research Achievements |
高い生体親和性と送達性を有する多機能性ナノ粒子のシングルステップでの高速合成が可能となり,工学的なブレークスルーによる医療分野発展に寄与する。また学問的観点から本プロセスを構成する個々の物理過程を見ると,電磁流体工学・熱工学・化学工学・材料工学にわたる分野横断型研究であるため,本研究を通して得られる学問的知見は,多機能性ナノ材料合成システムの設計指針を与えるのみならず,各種工学分野と共有できる基礎資料を提供することになり,高い学術的貢献度が付随する。加えて,新規開発した可視化計測法や数値計算コードはその汎用性・拡張性から転用も可能であるため,他分野における技術革新の一助となる潜在性を有する。
|