• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Understanding and control of electron and phonon transport in hierarchical structure of carbon nanotubes

Research Project

  • PDF
Project/Area Number 21H01259
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 19020:Thermal engineering-related
Research InstitutionKyushu Institute of Technology (2023)
The University of Tokyo (2021-2022)

Principal Investigator

Kodama Takashi  九州工業大学, 大学院工学研究院, 教授 (10548522)

Co-Investigator(Kenkyū-buntansha) 志賀 拓麿  国立研究開発法人産業技術総合研究所, 計量標準総合センター, 主任研究員 (10730088)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywords熱エネルギー工学 / マイクロ/ナノ加工 / カーボンナノチューブ / マルチスケール熱伝導測定
Outline of Final Research Achievements

To clarify the mechanism of the variation in the thermal conductivity of carbon nanotubes (CNTs) when it forms different types of material structure from nano to bulk scale, we evaluate the dependence of thermal conductivity of CNTs microfibers with variation of the degree of orientation and bulk density fabricated by liquid crystal spun method. The measurement results indicate that the thermal conductivity of the microfibers shows a strong correlation with the orientation degree, material density, and the electrical conductivity, and that the bulk thermal conductivity shows a value close to the saturated thermal conductivity of the raw CNT bundle obtained by nanoscale thermal conductivity measurement. Further, regarding the reduction of the thermal conductivity due to bundling, molecular simulation of the thermal conductivity of CNT bundles with different chiralities succeed in qualitatively finding that the chirality mismatch affects the suppression of the thermal conductivity.

Free Research Field

熱工学

Academic Significance and Societal Importance of the Research Achievements

本研究で得られたバルクCNT材料の熱伝導性に関する知見は、フレキシブル高熱伝導材料など次世代熱拡散材の性能を向上させるための貴重な設計指針であり、さらには電気伝導率とも強い相関関係が生じていることから、次世代電線といった熱工学を超越した幅広い工学応用に繋がる極めて社会的インパクトの強い研究成果であると考えられる。また、本研究で実証したCNT線材内への直接分子内包による熱電物性の変調現象は、今後、製作されたCNTバルク構造体の性能向上にも結び付く貴重な研究成果であるといえる。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi