• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Construction of a motion analysis system with less interference with skillful movements

Research Project

  • PDF
Project/Area Number 21H01280
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 20020:Robotics and intelligent system-related
Research InstitutionSaitama University

Principal Investigator

Tsuji Toshiaki  埼玉大学, 理工学研究科, 准教授 (60434031)

Co-Investigator(Kenkyū-buntansha) 本道 伸弘  人間総合科学大学, 保健医療学部, 助教 (10867344)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywords運動解析 / 模倣学習 / 自動化
Outline of Final Research Achievements

We developed a new motion analysis technique to capture the nuances of human skilled movements without mechanical interference. Key achievements include: (1) A compact, high-performance force sensor comparable to commercial sensors. (2) A segmentation algorithm using time derivatives of force/torque signals, effectively segmenting skilled motions. (3) Imitation learning utilizing frequency information from force sensor responses, enabling accurate force detection and real-time force control during skilled tasks.

Free Research Field

ロボット工学

Academic Significance and Societal Importance of the Research Achievements

既存の運動解析システムが持つ力学的な干渉の問題を克服し、人の繊細な技能運動を正確に解析・再現できる新しいシステムを提案した。小型で高性能な力覚センサと、力・位置情報から動作を分節化する手法、力センサの周波数情報を活用した模倣学習技術によって、これまで困難であった繊細な力加減を伴う高度な技能動作の解析と再現が可能になった。人の技能の解析はロボット工学のみならず認知科学や理学療法学、スポーツ工学等に応用しうる技術であり、学術的意義が大きい。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi