• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Ultrafast Superlattice Phase-change Artificial Synapse

Research Project

  • PDF
Project/Area Number 21H01382
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 21060:Electron device and electronic equipment-related
Research InstitutionGunma University

Principal Investigator

Yin You  群馬大学, 大学院理工学府, 教授 (10520124)

Co-Investigator(Kenkyū-buntansha) 難波 一輝  千葉大学, 大学院情報学研究院, 准教授 (60359594)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywordsシナプス素子 / 相変化材料 / 人工知能 / 高速化
Outline of Final Research Achievements

In recent years, a new concept of brain-like systems that have the functions of neurons and synapses, the basic components of the brain, has been proposed, and research has progressed significantly. Artificial synapses have the problem of slow speed due to limitations in materials, operating principles, and operating methods. In order to realize and develop new technologies such as autonomous driving, which require rapid response to instantaneous situation changes, with a view to application in all future situations, we have to explore synaptic functional materials, operating principles, and operating methods. In this study, we used first-principles calculation methods to search for new phase change materials by adding other atoms. It was demonstrated that the fabricated synapse device exbihited much faster operating speed than those of the human brain. The controllability was investigated by changing the pulse shape into a step-like shape.

Free Research Field

電子デバイス

Academic Significance and Societal Importance of the Research Achievements

新規超格子状メモリ機能相変化材料の理論解析から応用まで多くの研究報告例があったが、他原子添加法による物性制御の研究がほぼ見当たらない。本研究では、他原子の添加により革新的超格子シナプス機能材料を開発でき、超格子材料の人工知能分野への新規応用が期待される。また、将来のあらゆる場面での応用を見据え、瞬時的な状況変化への迅速な対応が必要とされる自動運転等の新技術を実現・発展するには、ヒトの脳機能を遥かに超える脳型システムの開発が極めて重要である。本研究はそれに向かって着実に進んだものである。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi