2023 Fiscal Year Final Research Report
Structured catalyst system for innovative alkane dehydrogenation created by direct electrical excitation of redox lattice S species.
Project/Area Number |
21H01701
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 27020:Chemical reaction and process system engineering-related
|
Research Institution | Shizuoka University |
Principal Investigator |
Watanabe Ryo 静岡大学, 工学部, 准教授 (80548884)
|
Co-Investigator(Kenkyū-buntansha) |
福原 長寿 静岡大学, 工学部, 教授 (30199260)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | レドックス / 格子硫黄 / 通電加熱 / 脱水素 / メタン化 |
Outline of Final Research Achievements |
In the present study, a highly active and highly selective dehydrogenation reaction field was created in a structured catalyst system by directly injecting electrical energy into the catalytic reaction field to avoid gas-phase decomposition. Specifically, it was found that selective heating of the catalyst section by energized heating produced C5 olefins at a high selectivity. The system of energized catalysts was also deployed in the oxidative dehydrogenation of propane and the methanation of CO2. The energized heating system, in which the porous catalyst was directly heated by applying current and voltage to the catalyst, resulted in efficient reactions. Furthermore, it was found that the temperature of the catalyst bed could be easily controlled in the methane conversion reaction of CO2 using the energized catalyst, and that high CO2 conversion rates could be achieved even with a small power supply of a few watts, demonstrating the usefulness of the proposed system.
|
Free Research Field |
反応工学、触媒化学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究における学術的意義は、触媒反応場への直接的な電気エネルギー投入によって高性能な脱水素反応場を実現した点にある。通電加熱を利用することで、従来の気相分解を回避し、特定の化学反応において高効率・高選択率を達成した。これにより、少量の電力で高い反応効率を示す新たな触媒システムの可能性を示した。社会的意義は、再生可能エネルギーの導入が進む現代において、本研究で開発された通電加熱式システムが、低消費電力で高効率な化学反応を可能にする点が挙げられる。特に、CO2のメタン化反応において高いCO2転化率を示すことから、温室効果ガスの削減や再生可能エネルギーの有効利用に貢献する技術として期待される。
|