• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Correlation between load and stacking structure of superlubricity at Van der Waals layered structure / nanocarbon molecules interface

Research Project

  • PDF
Project/Area Number 21H01747
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 28020:Nanostructural physics-related
Research InstitutionThe University of Electro-Communications

Principal Investigator

Sasaki Naruo  電気通信大学, 大学院情報理工学研究科, 教授 (40360862)

Co-Investigator(Kenkyū-buntansha) 三浦 浩治  電気通信大学, ナノトライボロジー研究センター, 客員教授 (50190583)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywords超潤滑 / フラーレン / グラフェン / 接触 / 分子シミュレーション
Outline of Final Research Achievements

The load and size dependences of the sliding process at the layered material interface and the semiconductor interface were investigated as the change in the maximum static and the kinetic friction forces due to the compression. At the layered material interface, a molecular mechanics simulation of shear in the low-loading region was performed to study the load dependence of the mean lateral force by changing the orientation of the intercalated fullerene molecules. It was found that the Amonton-Coulomb law held and that the effect of the orientation of the intercalated molecules gave greater influences on the kinetic friction coefficient than that of the anisotropy of the scanning direction. At the silicon pillar interface, kinetic to static friction transitions occurred for the Si pillar with its diameter less than the sub-micrometer. This research project provides guidelines for the structural design and load control of thin film interfaces aimed at control of superlubricity.

Free Research Field

ナノトライボロジー

Academic Significance and Societal Importance of the Research Achievements

マクロサイズの部品の摩耗や破壊に起因する機械の故障による経済損失は年間10数兆円に達するため、摩擦の制御は産業上の要請である。一方、ナノメートルサイズでは部品に働く相互作用由来の摩擦や凝着が著しく増大し、物体のスムーズな運動は著しく阻害される。したがって研究成果の社会的意義は、摩擦制御の指導原理の提案による微細部品のスムーズな稼働を通して、次世代省エネルギー技術の開発、ひいてはSDGsやカーボンニュートラルに貢献することである。一方、ナノサイズからマクロサイズまで全ての階層で現れる摩擦現象の普遍的な物理法則をマルチスケールトライボロジーという新たな学理に落とし込むという学術的意義も有している。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi