2023 Fiscal Year Final Research Report
Syntheses of Porous Molecular Conductors toward Creating and Controlling Novel Electronic States
Project/Area Number |
21H01901
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 32020:Functional solid state chemistry-related
|
Research Institution | Nagoya University (2022-2023) Tohoku University (2021) |
Principal Investigator |
Iguchi Hiroaki 名古屋大学, 工学研究科, 准教授 (30709100)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 多孔性配位高分子(MOF) / 分子性導体 / 一次元電子系 / 電気伝導 / ナフタレンジイミド / ドーピング / 分子性量子ビット(Qbit) / マクロサイクル |
Outline of Final Research Achievements |
In this study, we focused on porous molecular conductors (PMCs), which have the characteristics of both molecular conductors and porous coordination polymers, in order to control the electronic states of the entire bulk molecular crystal. We worked on the development of robust PMCs whose crystallinity does not deteriorate even after repeated molecular adsorption and desorption. In addition, their electronic states and electronic properties were controlled by the guest adsorption and desorption. During the research, we found unexpected functions, such as an unusual blue coloration of the ligand and a π-radical crystal showing slow magnetic relaxation, which is applicable to molecular quantum bits. We synthesized various PMCs in a variety of framework dimensionality from zero to three. Their robustness were improved compared to reported PMCs. We also found changes in electronic structure and physical properties upon reaction with redox-active molecules.
|
Free Research Field |
錯体化学
|
Academic Significance and Societal Importance of the Research Achievements |
導電性と多孔性を併せ持つ物質は、電池やスーパーキャパシタの電極材料、分子選択的センサー、電気化学触媒等への応用が期待されている。PMCは結晶性が高く、規則的なナノ細孔構造を有している点や、分子設計によってナノ細孔の大きさや化学機能をチューニング可能な点で、炭素材料に代表される既存の物質系にはない特長を有しており、特に高機能性が求められる局面で有用な導電性多孔質材料となりうる。本研究によって多様なPMCが開発できたことで、今後の応用展開への道が開けた。一方で、化学ドーピングによって自在に電子状態を制御可能になることで、分子性結晶では困難であった新奇な電子状態や電子物性の探索が可能になりつつある。
|