2023 Fiscal Year Final Research Report
Local viscoelastic properties and their origins of foam films investigated by the interferometric imaging techniques through elastic/inelastic dynamic light scatterings
Project/Area Number |
21H01969
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 34020:Analytical chemistry-related
|
Research Institution | Tokyo University of Science |
Principal Investigator |
Yui Hiroharu 東京理科大学, 理学部第一部化学科, 教授 (20313017)
|
Co-Investigator(Kenkyū-buntansha) |
浦島 周平 東京理科大学, 研究推進機構総合研究院, 講師 (30733224)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 泡膜 / 光散乱 / 光干渉 / 粘弾性 / 界面活性剤 / 添加剤 / 顕微鏡 |
Outline of Final Research Achievements |
Stability control for foam films is important technique in detergents and foods industrie. To estimate the viscoelastic nature and investigate its origins in thin foam films, we have newly developed an interferometric optical imaging microscope. This optical method is based on the measurement of dynamic light scattering and signal enhancement by an optical heterodyne interference. In the present study, we focused on the local viscoelastic property of one lamella foam film through the measurement of the time courses of the optical interference image and the dynamic light scattering. The viscoelastic property is estimated by the auto-correlation analysis on the dynamic light scattering. These instrument and measurement technique developed here enabled us to investigate the microscopic origins for the viscoelastic property of foam films. We varied the kind of additives for changing the stability of the foam film and investigated the responsible molecular origins for the viscoelasticity.
|
Free Research Field |
レーザー分光学、分析化学、物理化学
|
Academic Significance and Societal Importance of the Research Achievements |
これまで、泡膜の安定性はその集合体である泡沫の崩壊時間から見積もられてきたが、本研究では、分子膜からなる泡膜1枚の粘弾性計測を可能にしたことで、泡膜の安定性に関して、その分子起源に迫れるようになった。泡膜の安定性制御は、身の回りの数多くの衛生用品や、食品の食感制御など様々な分野において重要であり、環境負荷の少ない粘弾性制御方法の分子論からの確立は、持続可能な社会の構築の基盤技術となる。
|