• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Electron Spin-Selective spontaneous exciton dissociation in organic semiconductor solid-state films

Research Project

  • PDF
Project/Area Number 21H02015
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 35030:Organic functional materials-related
Research InstitutionKyushu University

Principal Investigator

Nakanotani Hajime  九州大学, 工学研究院, 准教授 (90633412)

Project Period (FY) 2021-04-01 – 2024-03-31
Keywords自発配向分極 / 有機半導体 / 分子配向 / 巨大表面電位 / 励起子解離
Outline of Final Research Achievements

In this study, we focus on spontaneous exciton dissociation in polar organic semiconductor solid-state thin films and investigate the role of excited spin states in exciton dissociation events. We found that the exciton dissociation from the triplet excited state proceeds more favorably than that from the singlet excited state. Furthermore, minimizing the recombination probability between holes and electrons as much as possible found that the electron lifetime has an extremely long lifetime of over one month, even at room temperature, and that spatial information can also be retained. These experimental results revealed by this research not only provide design guidelines for opt-electric organic devices that realize highly efficient and ultra-long-lived charge-separated states but also lead to the creation of novel devices that control the physical phenomena of light absorb, charge accumulation, and light emission, thereby opening up further possibilities for organic electronics.

Free Research Field

有機光エレクトロニクス

Academic Significance and Societal Importance of the Research Achievements

本研究では、励起子解離により生成した電荷(電子)は、有機薄膜中で1ヶ月間以上に渡って極めて安定に保持されているという事実を初めて見出した。またさらに、長時間保持されている電荷は、有機薄膜中で空間的にも保持されていることを実験的に確認した。これらの事実は、従来不安定であると考えられていた有機薄膜中の電荷(ラジカル状態)は、有機分子の極性によって誘起される自発配向分極の形成により、その有機薄膜界面で安定に保持可能であるということを意味し、光電変換素子の高性能化だけでなく撮像素子やメモリ素子など、将来のIOT社会構築に必須となる様々なデバイスに応用できる可能性があり、得られた学術的意義は大きい。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi