• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Constraction of technological foundation for surface utilization of nanocellulose

Research Project

  • PDF
Project/Area Number 21H02256
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 40020:Wood science-related
Research InstitutionKyoto University

Principal Investigator

Teramoto Yoshikuni  京都大学, 農学研究科, 准教授 (40415716)

Co-Investigator(Kenkyū-buntansha) 高野 俊幸  京都大学, 農学研究科, 教授 (50335303)
矢部 富雄  岐阜大学, 応用生物科学部, 教授 (70356260)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywordsセルロースナノファイバー / 水溶性改善 / 難水溶性物質 / ポリドーパミン / 銅ナノ粒子 / 導電性 / 抗酸化性 / 統計的手法
Outline of Final Research Achievements

This study established a technological foundation to accelerate the social implementation of cellulose nanofibers (CNFs). Two primary approaches were undertaken: utilizing the large surface area of CNFs to improve the water solubility of poorly soluble compounds and developing a conductive ink using non-oxidized copper nanoparticles (CuNPs) anchored on polydopamine (PDA) modified CNFs. Seventy poorly soluble compounds were examined for their solubilization rates in CNF dispersions, and a regression model was developed to identify key parameters for solubility improvement. Additionally, a conductive substrate was successfully fabricated using screen printing and low-temperature sintering of Cu@PDA@CNF ink, demonstrating antioxidative properties and enhanced electrical conductivity. These advancements highlight the potential of CNFs in various industries, contributing to fields such as pharmaceuticals, electronics, and environmental protection.

Free Research Field

バイオベース材料化学

Academic Significance and Societal Importance of the Research Achievements

本研究は、セルロースナノファイバー(CNF)の大表面積を活用し、難水溶性化合物の水溶性を向上させられることを明らかにした。難水溶性化合物の特性のうち,CNFで水溶性を向上させることができるものの特徴を,統計的に把握することができた。また、ポリドーパミン(PDA)修飾CNFを足場とすることで、抗酸化性と導電性を兼ね備えた銅ナノ粒子インクを開発した。これにより、CNFの新たな応用可能性が広がり、医薬品、電子デバイス、環境保護材料などの分野での社会的意義が大きい。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi