• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Elucidation of chemoresistant network of clear cell ovarian cancer via spatial analyses

Research Project

  • PDF
Project/Area Number 21H03081
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 56040:Obstetrics and gynecology-related
Research InstitutionTeikyo University (2022-2023)
National Cancer Center Japan (2021)

Principal Investigator

Okamoto Koji  帝京大学, 先端総合研究機構, 教授 (80342913)

Co-Investigator(Kenkyū-buntansha) 吉原 弘祐  新潟大学, 医歯学系, 教授 (40547535)
加藤 友康  国立研究開発法人国立がん研究センター, 中央病院, 科長 (50224522)
榎本 隆之  新潟大学, 医歯学系, 特任教授 (90283754)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywordsがん治療抵抗性 / がん組織多様性 / シングルセル解析 / 組織空間的解析
Outline of Final Research Achievements

Ovarian clear cell carcinoma has a poor prognosis, and understanding its resistance mechanisms is a critical medical challenge. In this study, we conducted analyses combining single-nucleus and spatial analyses on clinical cancer specimens. Through single-nucleus analysis, we identified HIF-1 positive cancer cell populations as chemoresistant cells. Furthermore, integrated analysis with spatial transcriptomics revealed that these resistant cells co-localize with cancer-associated fibroblasts (CAFs). Additionally, in co-culture systems of clear cell carcinoma spheroids and CAFs, we demonstrated that HIF-1 positive cancer cells and CAFs are activated through mutual interactions. This feedback regulation between the two cell types is considered a potential therapeutic target.

Free Research Field

分子腫瘍学

Academic Significance and Societal Importance of the Research Achievements

本研究において、卵巣明細胞がん臨床検体を用いて、がん細胞と非がん細胞の「相互依存空間」が抗がん剤抵抗性を担う事を明らかにした点に学術的意義があると考えられる。また、1細胞核発現解析と最先端技術である空間的遺伝子発現解析を統合し、抵抗性細胞群の組織切片上で抵抗性ニッチを可視化する方法論を確立した点にも、学術的な独自性があると考える。本研究の社会的意義としては、これらの研究を通じて、これまで有効な治療法のなかた卵巣明細胞がんの新しい治療法構築に結びつく可能性があると考えられる。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi