2021 Fiscal Year Annual Research Report
ビッグデータ解析に基づく意思決定のための解釈支援基盤システムに関する研究
Project/Area Number |
21H03445
|
Research Institution | The University of Tokyo |
Principal Investigator |
豊田 正史 東京大学, 生産技術研究所, 教授 (60447349)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | ビジュアル解析 / 解析結果の解釈 |
Outline of Annual Research Achievements |
本年度は、機械学習の説明手法によって出力された大量の説明をインタラクティブに可視化する技術に関する基礎的な検討を行った。まず、複数の機械学習モデルの説明手法を用いて、多数の入力データに対する説明を生成し、複数の特徴や事例を比較しながらインタラクティブに探索可能とする可視化手法を提案した。本手法は、代表的な説明手法であるLIME [Ribeiro+,2016]、Anchor [Ribeiro+,2018]など複数の種類の説明手法を、多数の入力データに適用して生成された説明群をヒートマップ上に重畳して表示するものであり、入力データに依る説明の差異や、説明手法による説明の差異をユーザが比較検討することを可能としている。本手法を用いたプロトタイプシステムを構築し、小規模な医療系データ等に適用していくつかのケーススタディを実施した。
並行して、本プロトタイプシステムの有用性を評価するため、複数のタスクの検討を行った。具体的には、Twitter上において大規模な議論分析を実施するための基盤データセット構築、イデオロギー変容の分析、新型コロナウイルスワクチンの接種に対するスタンスの分類、ファクトチェックに値するツイートの抽出について検討を実施した。また、実用化を目標としていくつかの企業との連携についても検討を行った。
以上の研究内容は代表者を中心に、雇用するリサーチアシスタントと協力して手法・プロトタイプシステムの設計・実装を行った。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
機械学習の説明手法によって出力された大量の説明をインタラクティブに可視化する技術に関する基礎的な検討については順調に進んでおり、プロトタイプシステムの実装と小規模なデータセットを用いたケーススタディの実施についても実施できている。
本プロトタイプシステムの有用性を評価するためのタスク検討についても、主にソーシャルメディア分析の分野において複数のタスクについて検討を実施できている。現状では評価に適切なタスクを絞り切れていない状況だが、企業との連携等も通して検討を進めている。
|
Strategy for Future Research Activity |
機械学習の説明手法によって出力された大量の説明をインタラクティブに可視化する技術に関する基礎的な検討については、本年度に実施した検討及びプロトタイプシステムのケーススタディの結果を受けて、システムの設計を行う。
本プロトタイプシステムの有用性を評価するためのタスク検討についても、さらに検討を進めソーシャルメディアを用いた社会分析を主軸に、商用の推薦システムやウェブ広告の分野などについても連携企業と連携して検討を進めていく予定である。
|