• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Development of autonomous intelligence acquisition system infrastructure from large scale transcriptome

Research Project

  • PDF
Project/Area Number 21H03549
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 62010:Life, health and medical informatics-related
Research InstitutionNational Cancer Center Japan

Principal Investigator

Shiraishi Yuichi  国立研究開発法人国立がん研究センター, 研究所, 分野長 (70516880)

Co-Investigator(Kenkyū-buntansha) 飯田 直子  国立研究開発法人国立がん研究センター, 東病院, 研究員 (40360557)
吉見 昭秀  国立研究開発法人国立がん研究センター, 研究所, 分野長 (80609016)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywords大規模データ解析 / ゲノム変異 / クラウド / スプライシング
Outline of Final Research Achievements

Using large-scale transcriptome data stored in public sequencing repositories, we developed and implemented algorithmic software to identify genomic mutations that cause various splicing abnormalities. These were applied to more than 300,000 transcriptome data in the Sequence Read Archive, and more than tens of thousands of splicing mutations were identified. In addition, we performed a detailed analysis of the biological significance of these splicing variants. As an example, we identified a gain-of-function splice-site generating mutation in the NOTCH1 gene and demonstrated through practical biological experiments that this mutation causes activity that can be suppressed by nucleic acid drugs.

Free Research Field

生命情報学

Academic Significance and Societal Importance of the Research Achievements

今回開発したプラットフォームは、公共シークエンスレポジトリの蓄積されたデータを用いて実行することで、疾患に関連する変異および核酸医薬の創薬ターゲットとなる変異を自動的に検出可能となることを示した。これは、ゲノム医療における自律的な知識獲得の基盤となる実例となる。また、今後さらに蓄積が進むゲノムデータを効果的に活用するための実例となり、将来的にデータ駆動型の科学・医学を構築するための一つのモデルケースとなるだろう。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi