2023 Fiscal Year Final Research Report
Development of an experimental method for measuring three-dimensional strain distribution in calcified coronary artery model during balloon expansion
Project/Area Number |
21H03849
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 90140:Medical technology assessment-related
|
Research Institution | National Institute of Health Sciences (2022-2023) Waseda University (2021) |
Principal Investigator |
Tsuboko Yusuke 国立医薬品食品衛生研究所, 医療機器部, 主任研究官 (40809399)
|
Co-Investigator(Kenkyū-buntansha) |
八木 高伸 早稲田大学, 理工学術院, 主任研究員(研究院准教授) (00468852)
岩崎 清隆 早稲田大学, 理工学術院, 教授 (20339691)
挽地 裕 地方独立行政法人佐賀県医療センター好生館(総合臨床研究所), 総合臨床研究所, 医師・医療系職員 (90380774)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 断層粒子画像流速計測法 / ひずみ分布計測 / 血管内治療 / 冠動脈石灰化病変 / 生体組織モデリング / 医療機器 |
Outline of Final Research Achievements |
In order to visualize the mechanical interaction between the treatment device and the diseased vessel in endovascular treatment, we developed an evaluation system that integrates a transparent lesion model for strain measurement and tomographic-PIV imaging technology and examined its application to various endovascular treatment devices, including a balloon device for expanding a calcified coronary artery lesion. Our experimental expansion of a lesion model using a coronary balloon has not only allowed us to draw a three-dimensional strain distribution in a coronary calcified lesion model but also provided practical insights. We observed that the maximum strain occurred at the calcified stenosis, where a local stress concentration was expected, and a larger strain was distributed on the intimal side of the vessel model around the stenosis. These findings have direct implications for the design and use of endovascular treatment devices.
|
Free Research Field |
医療技術評価学
|
Academic Significance and Societal Importance of the Research Achievements |
有限要素解析等の従来法において、物性や分布の不均一な複合材料の破壊を伴う大変形を高精度に解析することは困難であった。本研究では、断層粒子画像流速計測法を用いた新規ひずみ分布計測手法と、内部に粒子を添加した石灰化部を備えた透明細径血管モデルを作製し、カッティングバルーン等拡張時のモデルひずみ分布を粒子追跡により高精度に計測する実験系を構築できた。 今後、冠動脈を想定した数mm径の血管に起こる微小変形からひずみを可視化する実験手法の開発を進め、提案手法の展開により石灰化破壊の治療効果や、血管損傷のリスクを詳細に分析し、適正な治療選択や手技のための定量的説明を臨床現場に提供することが期待できる。
|