2022 Fiscal Year Annual Research Report
Creation of Fuel-Cell Electrocatalysts by Irradiation-Induced Atomic Vacancies: Performance Control Based on Clarification of Dynamic Behavior
Project/Area Number |
21H04669
|
Research Institution | National Institutes for Quantum Science and Technology |
Principal Investigator |
八巻 徹也 国立研究開発法人量子科学技術研究開発機構, 高崎量子応用研究所 先端機能材料研究部, プロジェクトリーダー (10354937)
|
Co-Investigator(Kenkyū-buntansha) |
松村 大樹 国立研究開発法人日本原子力研究開発機構, 原子力科学研究部門 原子力科学研究所 物質科学研究センター, 研究主幹 (30425566)
中村 一隆 東京工業大学, 科学技術創成研究院, 准教授 (20302979)
池田 隆司 国立研究開発法人量子科学技術研究開発機構, 関西光科学研究所 放射光科学研究センター, 研究統括 (60370350)
出崎 亮 国立研究開発法人量子科学技術研究開発機構, 高崎量子応用研究所 先端機能材料研究部, 上席研究員 (10370355)
田口 富嗣 国立研究開発法人量子科学技術研究開発機構, 高崎量子応用研究所 東海量子ビーム応用研究センター, 上席研究員 (50354832)
岡崎 宏之 国立研究開発法人量子科学技術研究開発機構, 高崎量子応用研究所 先端機能材料研究部, 主任研究員 (90637886)
|
Project Period (FY) |
2021-04-05 – 2025-03-31
|
Keywords | Pt/C触媒 / N-C触媒 / 原子空孔 |
Outline of Annual Research Achievements |
本研究では、炭素担体上のPtナノ微粒子(Pt/C)触媒、窒素ドープ炭素系(N-C)触媒で起こる酸素還元反応(ORR)の動的挙動に着目し、X線吸収微細構造(XAFS)解析、第一原理計算と超高速レーザー分光を融合させることで、当該触媒における炭素原子空孔の役割を解明する。今年度は、蒸着、プラズマ処理等の物理的手法に加えて、様々な測定・分析に十分量となる粉末状試料の作製手法を確立するとともに、先進XAFS測定や分子動力学(MD)シミュレーション、過渡反射率測定を行った。 前年度までに開発した粉末状試料へのイオンビーム照射技術を利用して、放射光X線によるオペランド測定のためのPt/C触媒粉末を作製できた。一方、N-C触媒粉末の作製では、ポリアクリロニトリルの電子線照射・焼成により、導入窒素がピリジン型とグラファイト型の化学状態を有するN-C触媒を合成した。 今後の高度オペランド計測に向け、燃料電池の動作環境を模擬した湿潤、酸素雰囲気下でPt/C触媒のスペクトルを測定し、時分解XAFS測定の対照データを取得できた。X線ラマン散乱分光(XRS)測定では、高配向性熱分解グラファイト(HOPG)基板への原子空孔導入によるスペクトル変化を観測するとともに、雰囲気の高度制御に用いるスクロールポンプを導入することで、炭素のオペランドXAFS測定を行うための足掛かりを得た。 MD計算では、原子空孔導入グラフェン上のPtクラスターを触媒モデルとして、その酸素吸着をシミュレーションした。上記のXAFSスペクトルの結果と合わせて、Ptと酸素との弱結合化の起源を明らかにできた。過渡反射率測定では、高感度SPAD検出器を導入し、HOPGのグラフェン面間のコヒーレント光学フォノンを計測したところ、イオン照射による寿命の短縮が確認されたことから、原子空孔導入によるグラフェン層の歪み形成が示唆された。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
粉末状試料へのイオンビーム照射技術の利用や新たな試料作製法の開発を通して、様々な測定・分析に十分量となる当該のORR触媒を作製した。また、時分解XAFS測定のための対照データの取得やXRS スペクトルに基づく炭素の電子状態変化の解析を進め、高度オペランド計測による構成元素の化学状態、局所構造の評価に不可欠な高品質スペクトルの測定環境・条件を検討できた。MD計算によるシミュレーション結果は、炭素担体への原子空孔導入に伴いPt触媒上の酸素吸着が弱まることを示しており、これまでのXAFS、電気化学測定の結果と合わせることで、ORR触媒開発における荷電粒子(イオン、電子)ビーム照射の役割が見えてきた。さらに、フェムト秒レーザーを用いた過渡反射率計測では、イオンビーム照射フルエンスに依存したHOPG基板のフォノン振動の周波数変化を捉えることに成功している。これらは、ORR触媒における炭素原子空孔の役割解明に向けて重要な成果であり、研究はおおむね順調に進捗している。
|
Strategy for Future Research Activity |
Pt/C触媒では、Ptの担持状態が触媒性能を左右すると考えられるため、炭素担体上のPtナノ微粒子のサイズや形状が触媒活性にどのように影響を及ぼしているかの検討をさらに微視的な視点で進める。一方のN-C触媒では、触媒活性の最大化のため、電子線照射・焼成条件の最適化を図る。 ORRへの炭素原子空孔の効果を明らかにするため、以下の先進XAFS測定や理論計算を計画している。①作製したPt/C触媒に対し、電位掃引下等のオペランドXAFS測定によって、ORR過程におけるPtの電子状態変化を観測する。②XRS測定では、HOPG基板やN-C触媒を対象に、原子空孔や窒素導入による電子状態変化の解析を進め、触媒性能へ及ぼす影響を検討する。③本年度得られたシミュレーションモデルを利用して耐久性向上の可能性を検討するとともに、荷電粒子の照射による炭素材料の欠陥形成過程をシミュレーションすることで最適な原子空孔を導入するための条件を探索する。④超高速レーザー分光によるコヒーレント光学フォノンの精密解析や、原子空孔を有するグラファイトに対して適用できるコヒーレントフォノン制御モデルの構築を進める。
|
Research Products
(7 results)