2022 Fiscal Year Annual Research Report
量子グラフの位相的構造の解明と標準模型を超えた理論への応用
Project/Area Number |
21J10331
|
Research Institution | Kobe University |
Principal Investigator |
井上 奉紀 神戸大学, 理学研究科, 特別研究員(DC2)
|
Project Period (FY) |
2021-04-28 – 2023-03-31
|
Keywords | 余剰次元 / 量子グラフ / トポロジカル物性 |
Outline of Annual Research Achievements |
本年度は,量子グラフと呼ばれる1次元回路状の量子系を余剰次元とした模型を研究した.特に,この上の5次元Diracフェルミオンの質量スペクトルを解析した.量子グラフとは,線分と頂点で構成される量子系である.頂点では,様々な境界条件が許され得ることが特筆すべき特徴である.一般に余剰次元模型では,余剰次元方向の粒子の運動量が4次元からみたときの粒子の質量とみなせる.そして,その値や縮退度は余剰次元方向の境界条件に大きく依存することが知られている. 得られた結果は次のようなものである.量子グラフを余剰次元とする5次元時空上のDiracフェルミオンに対して,時間反転対称性,荷電共役対称性,パリティ対称性と量子グラフ方向の幾何学的対称性によって境界条件の分類を行うことができる.その際に得られた分類が,トポロジカル物性における0次元自由フェルミオン系の対称性によるハミルトニアンの分類と,非自明に対応しているといことである.また,余剰次元模型側で求まる,カイラルゼロモードの差やその個数の偶奇性は,トポロジカル物質の表面に現れ得るエッジモードの個数と対応していることがわかった.一見すると関係のないように思われる,トポロジカル物性と余剰次元模型との間に,量子グラフの境界条件を通して対応関係が得られたことは大きな結果である.そこで重要な働きをするのは,量子グラフの境界条件がトポロジカルな構造を持っているということであった.
|
Research Progress Status |
令和4年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和4年度が最終年度であるため、記入しない。
|