2022 Fiscal Year Annual Research Report
Project/Area Number |
21J10860
|
Research Institution | The University of Tokyo |
Principal Investigator |
亀岡 健太郎 東京大学, 大学院数理科学研究科, 特別研究員(PD)
|
Project Period (FY) |
2021-04-28 – 2023-03-31
|
Keywords | 半古典解析 |
Outline of Annual Research Achievements |
今年度の1つの成果は離散シュレーディンガー作用素の半古典解析の論文がアクセプトされ出版されたことである.査読者の意見を踏まえて原稿を修正するなど努力した.本論文では離散シュレーディンガー作用素を扱い,半古典的設定で固有関数の指数減衰をフィンスラー計量で記述するアグモン評価や,半古典でない通常の設定での固有関数の空間遠方での最良な非等方的な指数減衰を議論している.証明はトーラス上の擬微分作用素の解析に基づくものである. 前年度出版されたシュタルク作用素の共鳴の複素吸収ポテンシャル法の論文について北里大学で講演して議論した.これは減衰ポテンシャルと線形ポテンシャルの和をポテンシャルとするシュレーディンガー作用素の共鳴を,二次の複素ポテンシャルを付加した作用素の固有値の極限として特徴づけるものであった.この問題の多体問題などへの拡張を模索した.共鳴を持たないハミルトニアンに摂動を加えたものとして扱うことができないという困難がある.フレドホルム作用素の理論の使い方を変更することで,従来より一般的な状況への拡張の見通しを持つことができた. また量子カオス的設定での半古典解析についての先行研究について滋賀の研究会で講演し理解を深めた.双曲的捕捉集合が生成する共鳴の分布の問題を中心に研究し新しい結果を模索したがこの方向性での目立った成果は特に得られず,次年度以降の目標として継続して研究することとした.
|
Research Progress Status |
令和4年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和4年度が最終年度であるため、記入しない。
|