2022 Fiscal Year Annual Research Report
Project/Area Number |
21J12131
|
Research Institution | University of Tsukuba |
Principal Investigator |
足立 宏幸 筑波大学, 理工情報生命学術院, 特別研究員(DC2)
|
Project Period (FY) |
2021-04-28 – 2023-03-31
|
Keywords | 南部括弧の行列正則化 / ベクトル束の行列正則化 |
Outline of Annual Research Achievements |
当該年度は、主に二つの研究を行った。一つ目は接触多様体を用いた三次元多様体上の南部括弧の行列正則化の研究である。接触多様体とは接触形式と呼ばれる一形式が備わっている多様体で、その接触形式を接続に含んだディラック作用素の核を考えることが出来る。関数をその核上に制限された作用素として定式化することで、三次元多様体の行列正則化を試みた。しかしながら、通常のシンプレクティック多様体の行列正則化の理論(Berezin-Toeplitz量子化)で見られるようなディラック作用素の電荷に依存したスペクトルの開きがなく、関数の演算(積、南部括弧)と行列の演算の対応を見る上で重要な作用素の積の漸近展開をすることができなかった。よって、関数から行列への写像は構成できるものの、行列代数の中での南部括弧に対応する演算については理解することが出来なかった。二つ目の研究はケーラー多様体上のベクトル束の行列正則化である。昨年度の研究では閉二次元多様体上のベクトル束の行列正則化に限られていたものを、より高次元の場合も含む閉ケーラー多様体の場合に一般化した。特に複素射影空間と高次元トーラス上の一様磁場と結合するスカラー場の理論の正則化を行い、実際に電磁場を接続として含むラプラシアンの固有値の対応を見ることが出来た。これにより、電荷を持たないスカラー場の理論だけでなく、テンソル場や電荷を持つ場といったより一般の場の理論の行列正則化を行うことが出来る。
|
Research Progress Status |
令和4年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
令和4年度が最終年度であるため、記入しない。
|
Research Products
(3 results)