• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Annual Research Report

深層学習とMRIの融合による撮像の高速化と高画質化の研究

Research Project

Project/Area Number 21J14120
Research InstitutionUtsunomiya University

Principal Investigator

大内 翔平  宇都宮大学, 工学研究科, 特別研究員(DC2)

Project Period (FY) 2021-04-28 – 2023-03-31
KeywordsMRI / 深層学習 / 高画質化 / 圧縮センシング / 再構成
Outline of Annual Research Achievements

磁気共鳴映像法(MRI)では、撮像時に要する時間が長いため、撮像の高速化が検討されている。また、近年では、MR画像の再構成にCNNを用いることで、撮像の高速化と再構成像の高品質化を図る手法が提案されている。一方で、既存のこれらの手法の多くは、画像が実関数となる理想的な条件を想定しており、実際のMRIにおいて装置特性が要因となって発生する位相のひずみを持つ画像には対応していない問題がある。本研究では、位相情報を持つ複素画像を実関数化することで、位相情報の考慮が不要かつ、位相のひずみに頑健なCNN再構成法を提案し、その特徴を明らかにする。また、MR画像の分解能をCNNによって評価する手法について、有効性を検討する。令和4年度は、提案する位相に頑健なCNN再構成法の成果をまとめて論文として発表するとともに、分解能評価CNNの精度向上を図った。位相に頑健なCNN再構成については、昨年度までの検討により提案手法の有効性が確認されたが、近年では複素数に対応したCNNが提案されていることから、複素数型のCNNと提案手法で再構成の結果を比較した。その結果、複素数の考慮を必要とせず、実関数型のCNNで再構成を行える提案法では、複素数型CNNよりも高速かつ高品質な再構成像ができることを確認した。これまでに得られた結果をまとめて論文として投稿し、採択が決定した。
分解能評価CNNについては、これまでは画像空間上で分解能の評価を行ってきたが、多重解像度解析手法による変換を行った画像に対して分解能評価を行う方法を検討したところ、画像空間で評価する場合よりも評価精度が向上することを確認できた。

Research Progress Status

令和4年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和4年度が最終年度であるため、記入しない。

  • Research Products

    (4 results)

All 2023 2022

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Efficient complex-valued image reconstruction for compressed sensing MRI using single real-valued convolutional neural network2023

    • Author(s)
      Ouchi Shohei、Ito Satoshi
    • Journal Title

      Magnetic Resonance Imaging

      Volume: 101 Pages: 13~24

    • DOI

      10.1016/j.mri.2023.03.011

    • Peer Reviewed
  • [Presentation] Overview of Complex-valued Image Reconstruction for CS-MRI Using Real-valued CNN with Symmetrical Signal Under-Sampling2023

    • Author(s)
      Shohei Ouchi, Satoshi Ito
    • Organizer
      2023 ISMRM & ISMRT Annual Meeting & Exhibition
    • Int'l Joint Research
  • [Presentation] MR深層学習再構成におけるMR画像特徴を利用した学習時とテスト時のデータ拡張の有効性に関する検討2022

    • Author(s)
      大内 翔平,伊藤 聡志
    • Organizer
      第41回日本医用画像工学会大会
  • [Presentation] Encoder-decoderCNNを用いたパッチベース型MR画像再構成に関する検討2022

    • Author(s)
      佐藤 裕貴,山登 一輝,大内 翔平, 伊藤 聡志
    • Organizer
      第41回日本医用画像工学会大会

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi