2023 Fiscal Year Final Research Report
Regulation of Data-driven Policing
Project/Area Number |
21K01193
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 05050:Criminal law-related
|
Research Institution | Hitotsubashi University |
Principal Investigator |
MIDORI Daisuke 一橋大学, 大学院法学研究科, 教授 (50389053)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | データ駆動型警察活動 / 強制処分法定主義 / 重要事項留保 / 法律留保原則 / 令状主義 / 任意捜査 / 行政警察活動 / 司法警察活動 |
Outline of Final Research Achievements |
I clarified the legal challenges of data-driven policing by examining the principles of criminal procedure law. In data-driven policing, the accuracy of crime prediction is influenced by the content and nature of the underlying data. Particularly, determining how to consider the occurrence of unreported crimes and police activities at the time of crime recognition can pose serious issues depending on the type of offense. Furthermore, since data is utilized in both crime prevention and response, it's essential to clearly define the relationship between administrative law and criminal procedure law. In particular, bridging the gap between the rule of law in administrative law and the statutory principles in criminal procedural law requires efforts to align understanding between the two, and it's crucial to integrate them comprehensively through the concept of important issue reservation.
|
Free Research Field |
刑事訴訟法
|
Academic Significance and Societal Importance of the Research Achievements |
犯罪予測を警察活動に実装する動きが諸外国および日本で確認できるが、(1)犯罪予測の精度をどのように法的に担保するか、(2)どのような事項は立法府によって制御されるべきか、(3)制御する際にはどのようなルールを設定すべきかは、明らかではない。そこで、本研究は、特に(1)(2)を明らかにすることに注力し、(1)暗数や警察活動方針の変化による影響が少ない罪種の犯罪発生予測については、人工知能による予測に適している可能性があること、(2)行政法と刑事訴訟法の双方の観点から、国民が関心を有し、警察権限の濫用が問題になりうる重要事項について立法府が法律によりルールを形成すべきことを示した。
|