• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Research-status Report

ビッグデータ時代における資産価格理論の実証的研究

Research Project

Project/Area Number 21K01560
Research InstitutionTokyo Metropolitan University

Principal Investigator

内山 朋規  東京都立大学, 経営学研究科, 教授 (50772125)

Project Period (FY) 2021-04-01 – 2024-03-31
Keywordsアセットプライシング / ビッグデータ / 機械学習 / オーバーフィッティング / ファクター / リスクプレミアム / ポートフォリオ選択 / 予測可能性
Outline of Annual Research Achievements

さまざまな資産の超過リターンが予測可能であることは現代のファイナンス理論における標準的な見方である。しかし、実証的に特定することは容易ではない。予測対象のデータには限りがある一方で、予測に用いるデータ(予測変数)には多くのものが利用可能なため、オーバーフィッティング(過学習)の危険性が伴う。本研究の特徴は、近年発展が目覚ましい機械学習の技術も活用し、資産価格理論の実証分析を行う点である。
前年度に開発した新たな手法に関する研究を継続した。本手法は、特性が持つリターン予測力を利用した最適ポートフォリオ構築に関するもので、資産のウエイトを特性の非線形関数として直接モデル化し、機械学習により期待効用が最大になるように構築する。これには伝統的なアプローチにおいて課題となるリターンの分布の推定は不要という利点がある。今年度は、すでに実施した日本株式市場での分析の精緻化を図るとともに、グローバル株式市場や為替市場への適用について進展させた。ただし、為替市場は株式市場ほどにはファクター効果に関する既存研究が多くないため、前述の最適ポートフォリオの研究の基礎部分である通貨リターンの予測可能性に関する分析にも注力した。
資産価格モデルを利用する際に、どの通貨建てで測るのかといった実証上の問題がある。そのため通貨のリスクプレミアムを考慮した資産価格モデルに関する研究も行った。通貨のリスクプレミアムを考慮すると、外貨建てと円建ての資産価格モデルでは円建ての期待超過リターンが異なり、最適ポートフォリオも異なる。これを考慮して、わが国の年金運用におけるホームバイアスのコストを明らかにした。さらには、ESGファクターが超過リターンに与える影響についても研究を実施した。ESGファクターを考慮した均衡期待リターンを導出し、サステナブル投資の経済的機能や最適ポートフォリオに関する論文原稿も作成中である。

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

研究の第一段である日本株市場における実証分析については一定の成果を得ることができているが、為替市場については基礎部分の分析、グローバル株式市場については分析データの導入や整備に時間を要している。ただし、これらの分析についても進捗はできているため、得られた結果を学会等で発表するとともに、さらなる研究に着手していきたい。

Strategy for Future Research Activity

研究計画は従来通りである。得られた成果を拡張し、分析用データベースの構築をしたうえで、通貨や債券、グローバル市場、資産配分への応用に研究対象を拡張していく予定である。同時に、これまでの結果を学会等で発表するとともに、論文の投稿を行う計画である。

Causes of Carryover

新型コロナウイルス感染症の影響に伴い、国内外の学会参加の旅費の支出などが想定を下回ったことや、データの追加購入の時期を延期したことによる。

  • Research Products

    (3 results)

All 2023 2022

All Presentation (3 results) (of which Invited: 1 results)

  • [Presentation] 家計における自社株式の最適保有―動的ポートフォリオ選択問題からのアプローチ―2023

    • Author(s)
      鈴木誠・内山朋規
    • Organizer
      日本ファイナンス学会第31回大会
  • [Presentation] 年金運用におけるホームバイアスのコスト2022

    • Author(s)
      内山朋規・上川知雄
    • Organizer
      日本ファイナンス学会第4回秋季研究大会
  • [Presentation] 機械学習と株式投資2022

    • Author(s)
      内山朋規
    • Organizer
      第17回日本統計学会春季集会
    • Invited

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi