2023 Fiscal Year Final Research Report
Development of SCORM-compatible LMS based on learning data analysis of descriptive courseware
Project/Area Number |
21K02783
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 09070:Educational technology-related
|
Research Institution | Nihon University |
Principal Investigator |
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 記述式コースウェア / クレペリン検査 / 脳波 / 推定 / フラクタル解析 / ボックスカウンティング / セミバリオグラム |
Outline of Final Research Achievements |
In this study, we primarily published two achievements as papers: (1) As a model for descriptive repetitive learning courseware, focusing on the Kreplin test, we clarified that there is a rhythm suitable for learners to maximize the number of responses by sounding a metronome, based on the relationship between EEG and the number of responses. Additionally, for descriptive problems where unanswered questions can occur, we proposed a method to estimate the EEG that maximizes the number of responses based on past learning data and compared it with actual measurements. (2) When creating descriptive courseware, the presented problems include images. We proposed a new analytical method to distinguish the features of shape and color of tools as images using fractal dimensions. Furthermore, we applied fractal dimensions to determine the cleanliness of tools.
|
Free Research Field |
工学教育
|
Academic Significance and Societal Importance of the Research Achievements |
研究成果の学術的意義や社会的意義は次の2件にある。 (1)クレペリン検査中の脳波の測定により,学習者に最適リズム(通常リズムの1.2倍)を与えることで,回答数はリズムの倍数以上になることを実測値と推定値から明らかにした。今後,本研究は教員の授業テンポ(リズム)に学習者が追従できる資料や,過去の学習データの組合せから学習者個々にとって最適な学習法が推定できる方法として有用となる。 (2)画像解析のモデルとして工具を対象に,種類,分野,形状の特徴,及び工具の劣化を判別した。今後,本研究はフラクタル次元を用いた新たな工具の開発や,工具の交換時期を管理する分析法として有用となる。
|