2022 Fiscal Year Research-status Report
Formal Pade approximation toward the period conjecture observing period integral via differential algebra
Project/Area Number |
21K03171
|
Research Institution | Nihon University |
Principal Investigator |
平田 典子 (河野典子) 日本大学, 理工学部, 特任教授 (90215195)
|
Project Period (FY) |
2021-04-01 – 2026-03-31
|
Keywords | Hermite-Pade近似 / 多重対数 / Lerch関数 / Riemann zeta関数 / 一次独立性 / 無理数性 / 単数方程式 / 超幾何級数 |
Outline of Annual Research Achievements |
2022年度はSinnou David, Anthony Poels, 川島 誠, 鷲尾夕紀子との共同研究が進み,予想以上の成果が得られ,海外の研究集会にも招聘された.また,新たな研究にも着手し,著書執筆の提案も受けて開始した.本研究費のおかげである.Hermite-Pade近似というディオファントス近似において,先行研究では達成し得なかった「異なる点,異なるshift,異なるdepthにおける,Lerch関数の代数的数での値の代数体上の一次独立性に対する判定基準」を証明した論文等が出版された.平易な系としては,いわゆる多重対数関数の値の有理数体上の一次独立性の結果,そして無理数性が,原点に十分近い複数の点において成立することを証明した.これらは抽象的な扱いによるパデ近似多項式の具体的な構築と周期写像の微分代数構造の解明および,関連する行列式の非零性の証明に負うものである.加えて,べき乗関数に対して得られた川島-Poelsの成果を応用して,S単数方程式の解の個数の改良をまとめ,2022年に研究成果を投稿した.口頭発表としては,超幾何級数の値の数論的性質に関して,ドイツのOberwolfach Workshop Diophantische Approximationen及びイタリアLeucaの研究集会において招待講演を実施した.ディオファントス方程式に対するさらなる考察,そして一般的な超幾何級数への成果拡張と応用についての知見獲得を現在,継続している.2023年3月の国際研究集会 Diophantine Analysis and Related Fields 2023の開催も,本研究費を用いて対面実施することができた.以上の成果を,リーマンゼータ関数の整数における値のなす有理数体上の線形空間の次元の下からの評価にも応用予定である.
|
Current Status of Research Progress |
Current Status of Research Progress
1: Research has progressed more than it was originally planned.
Reason
まず,久しぶりに開催された外国における研究集会(イタリア Leuca)に,この研究費の旅費を活用させていただき,対面参加が実施できた.多くの数学者と対面討議ができたことが研究推進の効果として挙げられる.論文出版がタイムリーに実施できたことによって,本課題の研究成果への関心の高まりも得られ,出版のタイミングの良さにも恵まれたと言えよう.今まで対面討議の機会が少なく,進められなかった共同研究をLeucaで詰めることができたために,プレプリントもまとめられた.この他に今までzoomのみで定期的に実施していたDiophantine Analysis and Related Fields Online Seminar (月に1回)を,対面での国際研究集会 Diophantine Analysis and Related Fields 2023 として新たに再開できたことも,新規の共同研究の企画作りに寄与した.2023年度には,インドのShanta Laishram氏や,イスラエルのGal Binyamini 氏などの新たな海外協力者を加え,本研究課題に関する密な研究討議を行うための招聘を実施する計画である.
|
Strategy for Future Research Activity |
研究代表者がこの研究費で進められた抽象的パデ近似の理論と周期写像の微分代数構造の解明が,様々なディオファントス問題に応用可能であることが判明した.我々の成果を生かした新たな近似手法構築の可能性をまとめて海外招待講演を行い,参加者から注目された.そのため共同研究のオファーも受けた.同時近似への拡張が可能であることも判明したため,Pell方程式の解の決定問題への応用を考察中である.次年度はIndian Statistical Institute(インド)からのShanta Laishram氏,およびWeizmann Institute of Science(イスラエル)からのGal Binyamini氏の合計2名を招聘し,不定方程式の整数解へのパデ近似の応用をLaishram氏と,数理論理学へのパデ近似の応用についてBinyamini 氏と,討議予定である(1名は2022年度に招聘予定であったが,都合で2023年度に延期).一般の有限生成の乗法群における単数方程式の解に関する結果に対しても,我々の手法適用の可能性があるため,実際にどの程度の数値が得られるかということについて,2022年度と同様,1名の数値計算従事者を臨時職員で雇用し,数値実験を実施する計画である.
|
Causes of Carryover |
2022年度に研究代表者らは,査読付き論文を国際トップジャーナルに投稿,純粋数学としては珍しい早さで,立て続けに出版された.また海外研究集会での招待講演でも注目された.このように2022年度に思いがけず多くの成果を獲得したこともあり,国内における若手研究者との共同研究テーマとして,Pell方程式に関する研究計画が新たに発生した.しかしPell方程式の解の個数の評価に関するアプローチについては,別の研究グループがあるので,本研究課題の成果の応用を我々が迅速に達成することは時間との戦いになる.従っていち早く短期集中して研究費を活用し,決定的な成果を出す必要があった.このため,新たな海外協力者を加え,本研究課題に関する密な研究討議を行うための招聘を実施することを急に計画し,2022年度の招聘旅費として使用する予定であった(インドから約1週間の研究者1名の招聘).この招聘が先方の都合で2022年度から2023年度に延期されたことにより,残額が生じた.2023年度に招聘を実施することに変更して,残額はその招聘費用に充当する.加えてイスラエルからも約1週間の共同研究者1名の招聘を2023年度に追加実施予定である.
|
-
-
-
-
-
-
-
-
-
-
[Presentation] Visual Pade Approximation for the Riemann zeta values at odd integers2022
Author(s)
杉本和希, 室井龍二, 山崎敬太, 鷲尾勇介, 川島誠, 鷲尾夕紀子, 鈴木潔光, 利根川聡, 平田典子
Organizer
RIMS, workshop, Kyoto University
Int'l Joint Research / Invited
-
-
-
-