• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Research-status Report

Studies on symmetric functions and enumerative geometry by quantum algebras and integrable models

Research Project

Project/Area Number 21K03176
Research InstitutionTokyo University of Marine Science and Technology

Principal Investigator

茂木 康平  東京海洋大学, 学術研究院, 准教授 (30583033)

Project Period (FY) 2021-04-01 – 2024-03-31
Keywords対称関数 / 楕円可積分系 / 可解確率過程
Outline of Annual Research Achievements

量子可積分系、可解確率過程、数え上げ幾何と関連の深い対称関数、楕円基底に関する研究を行っている。

そのうちの1つが最近導入された、refined canonical (dual) Grothendieck多項式という対称関数についての研究であり、代数的、組み合わせ論的観点の両方から研究を行い、種々の新たな公式(行列式表示、因子化表示、積分表示、展開公式、歪コーシー公式)を共同研究によって導出した。本研究は以前行った可解確率過程とGrothendieck多項式との関係ともつながりが深く、関連する研究を行うのに必要な公式を導出できた。

楕円基底に関しても研究を行い、楕円量子群による様々な代数的構成法及び、その間の関係を共同研究によって導出した。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

Refined canonical Grothendieck多項式に関してはそもそも当該年度に導入されたばかりで当初の研究計画には入っていなかったが、以前行った可解確率過程との対応の研究とも関連するものであるため、研究をすることにしたが、この種の多項式に対する自由フェルミンによる研究手法を導入した共同研究者の力で研究が大きく進展したため。

楕円基底の方に関しても最近、新たなアイデアや方針がわかったため。

Strategy for Future Research Activity

Refined canonical (dual) Grothendieck多項式に関しては可解確率過程との関係を証明するのに必要な公式を導出できたと思うので、今後はそれを中心に研究したい。

楕円基底に関しても最近、新たなアイデアや方針がわかったので、それについて検討したい。温故知新ということで、昔の量子可積分系の研究を学ぶ必要もある。

Causes of Carryover

出張が憚られる状況であったため、国内、海外出張を控えたため、次年度使用額が生じてしまった。出張ができるような状況になれば、国内、海外出張したいと考えており、それに使用する。

  • Research Products

    (2 results)

All 2022 2021

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (1 results)

  • [Journal Article] Refined Dual Grothendieck Polynomials, Integrability, and the Schur Measure2021

    • Author(s)
      Kohei Motegi, Travis Scrimshaw
    • Journal Title

      Seminaire Lotharingien de Combinatoire

      Volume: 85B Pages: 23

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Yang-Baxter代数を用いた, Grothendieck多項式に関する恒等式の歪版への拡張2022

    • Author(s)
      茂木 康平
    • Organizer
      日本数学会2022年度年会

URL: 

Published: 2022-12-28  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi