• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Research-status Report

保型微分方程式の視点からの保型形式・準保型形式と頂点作用素代数の対応に関する研究

Research Project

Project/Area Number 21K03183
Research InstitutionKurume Institute of Technology

Principal Investigator

境 優一  久留米工業大学, 工学部, 任期付助教 (10815567)

Project Period (FY) 2021-04-01 – 2025-03-31
Keywords保型線形微分方程式 / 準モジュラー形式 / モジュラー形式 / ヤコビ形式 / 頂点作用素超代数 / W代数 / 指標関数
Outline of Annual Research Achievements

本年度は,マックスプランク研究所のDon Zagier氏と大阪大学の永友清和氏との共同研究である保型線形微分方程式・作用素とRankin-Cohen括弧積に関する研究において,理論の更なる精密化及び修正を行なった.特に,概正則モジュラー形式と準モジュラー形式に対する正則射影(holomorphic projection)作用素についての対応及び付随する理論をより細密に研究した.この作用素と保型線形微分作用素との1対1対応についての記述及び理論に対する具体例を用いることにより理論の枠を正確に与えることができた.これらの研究結果においては,Transaction of A.M.S. に投稿中であり,現在修正の段階である.
また,永友清和氏との共同研究である伊吹山知義氏が与えた分数重さのモジュラー形式と単純ヴィラソロ頂点作用素代数の指標関数との対応関係については,論文構成をより簡潔に再構成している段階である.本論文も投稿準備中である.
また,頂点作用素超代数を念頭に,テータ群上での保型線形微分方程式を考察し,一般形を与えた.これは,Rankin-Cohen括弧積により記述可能である.しかしこの状態では微分方程式として持ちうる自由度が複数存在するため解の形を決定するには不十分である.ゆえに,(i) 超幾何型の線形微分方程式 であり (ii) 形式的冪級数解をもつ微分方程式においてのlog-form解の存在 を課して研究を行っている.この2条件により2階の保型線形微分方程式の解は1つの系列のみの存在であることを確認および具体的に記述した.これらは,大阪大学の永友清和氏と鹿児島大学の有家雄介氏との共同研究である.

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

保型線形微分作用素に関する研究は概ね順調に進んでおり,論文出版までの道筋がついたが,テータ群上での保型線形微分方程式においては,モジュラー群の場合よりも自由度をもつパラメータが複数存在しており,これらのパラメタの制御及び制限を与える際の由緒正しいものとは何かを調査することに労力を要している.

Strategy for Future Research Activity

本研究課題における最終年度にあたるため,これまでの研究内容に関するまとめや研究課題についてのリストアップを行い,今年度において解決可能な課題と今後の継続課題とするもの等に分類し共同研究者等に助力を求めつつ研究を進めたいと考える.また,これまでの研究成果も論文化し論文雑誌に投稿を行う予定である.

Causes of Carryover

研究代表者が所属する研究機関(大学)における業務の増加や,円安の影響による航空機や宿泊費の高騰により当初予定していた国内外の研究集会全ての参加を行えない状況であり,特に国外での国際研究集会などの参加をやむなく取りやめる場合などがあった.国外への出張(研究集会への参加等)においては,出張先の物価等の状況を考慮しつつ,出張期間の短縮など費用面での対応を行う予定である. 加えて,遠隔地へのリモート参加が可能な場合においては,積極的にzoomやskypeなどを用いて参加を行う予定である.これらの対応策及び研究代表者の所属の一部変更による業務効率化を含め,本事業の使用計画においての範疇で適切に使用できる見込みである.

  • Research Products

    (2 results)

All 2024 Other

All Int'l Joint Research (1 results) Presentation (1 results) (of which Invited: 1 results)

  • [Int'l Joint Research] マックスプランク研究所(ドイツ)

    • Country Name
      GERMANY
    • Counterpart Institution
      マックスプランク研究所
  • [Presentation] Modular linear differential equations and vertex operator algebras2024

    • Author(s)
      Yuichi Sakai
    • Organizer
      第3回仙台保型形式小集会
    • Invited

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi