2022 Fiscal Year Research-status Report
Project/Area Number |
21K03202
|
Research Institution | Nagoya University |
Principal Investigator |
岡田 聡一 名古屋大学, 多元数理科学研究科, 教授 (20224016)
|
Co-Investigator(Kenkyū-buntansha) |
石川 雅雄 岡山大学, 自然科学学域, 教授 (40243373)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 対称関数 / 組合せ論 / 表現論 / 可積分系 |
Outline of Annual Research Achievements |
この研究では,対称関数の間のさまざまな関係式を見出し,それらを表現論,組合せ論に展開することを目指し,(A) 古典型ルート系に付随したSchurのQ関数,(B) 平面分割の数え上げ問題,(C) d-completeな半順序集合上のP-partition,の3つのパートに分けて研究を進めた. 2022年度の研究のパート(A)では,佐藤-毛織によってKdv方程式,変形KdV方程式の研究の中で導入された関数(を対称関数とみなしたもの)がSchurのQ関数に一致するという水川-中島-山田の予想の証明に成功した. また,パート(B)では,Huh, Kim, Krattenthalerとの共同研究を継続した.ある種の制限を課した Schur関数の無限和を1つの行列式として表すアフィン版Gordon-Bender-Knuth型等式の定式化・証明を昨年度の研究で行ったが,極限を考え特殊化を施すことによって,この等式から奇数次直交Lie代数のある種の既約表現の一般線型Lie代数への制限の分解がわかる.今年度の研究では,偶数次直交Lie代数,斜交Lie代数の同様の分岐則を導くようなアフィン版Gordon-Bender-Knuth型等式の新たな変種を見出すとともに,これらを統一的に証明する枠組みを与えた.
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
これまでの研究で培われた手法,アイデアを用いて,可積分系に由来する水川-中島-山田予想を解決でき,可積分系への新たな展開が見いだされた.
|
Strategy for Future Research Activity |
パート(B)では,偶数次直交Lie代数,斜交Lie代数に関係したアフィン版Gordon-Bender-Knuth型等式の標準盤などの数え上げ組合せ論への応用を目指したい.
|
Causes of Carryover |
2022年度前半に参加を予定していた研究集会がオンラインに変更になるなどの理由で,次年度使用額が生じた.翌年度分と合わせて旅費等に使用する予定である
|
Research Products
(10 results)