2022 Fiscal Year Research-status Report
Study of existence and non-existence of invariant Einstein metrics on compact homogenous spaces
Project/Area Number |
21K03224
|
Research Institution | Osaka University |
Principal Investigator |
坂根 由昌 大阪大学, その他部局等, 名誉教授 (00089872)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 不変なアインシュタイン計量 / リッチテンソル / コンパクト等質空間 / コンパクト単純リー群 / グレブナー基底 / 一般化された旗多様体 |
Outline of Annual Research Achievements |
コンパクト等質空間上の不変なアインシュタイン計量の存在・非存在について次の研究を行った。 前年に得られていたコンパクトリー群にに関する結果、特殊ユニタリー群 SU(N) (N > 5) 上に、新しいnaturally reductiveでない左不変アインシュタイン計量が存在すること、の証明方法を改良した。すなわち、2020年に、Arvanitoyeorgos、Statha と研究代表者により、等質空間 SU(k+m+n)/S(U(k)xU(m)xU(n)) を用いて、特殊ユニタリー群 SU(k+m+n) (k > 1, m > 1, n > 0)上にnaturally reductive でないAd(S(U(k)xU(m)xU(n))-不変なアインシュタイン計量が存在することを示したが、この結果を拡張し、コンパクトリー群 SU(m+ k(p-1))上に新しい不変なアインシュタイン計量の存在することの証明方法を改良した。また、得られた左不変アインシュタイン計量が等長となるかを研究した。これらの結果を北海道大学で開催された日本数学会秋季総合分科会で講演した。 存在・非存在については、2005年のBohm に関連して、SO(N)、Sp(N) のあるコンパクト等質空間系列上に、不変なアインシュタイン計量の存在しない場合、あるいは、存在する場合がある例を構成し、また、1997年にParkと研究代表者により構成した SO(N) のコンパクト等質空間の拡張に対して、不変なアインシュタイン計量の存在しない場合、あるいは、存在する場合がある、ことを前年に示していたが、存在する場合に関してより良い結果を得た。これにより、さらに多くの不変なアインシュタイン計量の存在する例が構成できた。この結果を中央大学で開催された日本数学会年会で講演した。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
コンパクト単純リー群上のアインシュタイン計量については、特殊ユニタリー群 SU(N) (N > 5) 上に、新しいnaturally reductiveでない左不変アインシュタイン計量が存在することを示した。等質空間 SU(m+ k(p-1))/S(U(m)xU(k)x・・・xU(k)) (N=m+ k(p-1) >5)を用いて、m > (p-1) k-1, p > 2, k > 1 のとき、特殊ユニタリー群 SU(m+ k(p-1)))上に、新しい naturally reductiveでない左不変アインシュタイン計量が存在することを示していたが、これらの計量が等長であるかという問題を解決できた。また、他の古典型のコンパクト単純リー群に対しても、同様の構成方法が出来るかについて研究を開始した。 また、Parkと研究代表者により SO(N) のコンパクト等質空間の系列で不変なアインシュタイン計量の存在しない場合、または、存在する場合があるという結果を1997年に得ていたが、これを拡張した系列に対して、不変なアインシュタイン計量の存在しない場合、または、存在する場合があることを、Bohmの結果と関連して前年に示していたが、存在する場合に関する結果を改良し、より多くの系列に対して存在証明ができた。
|
Strategy for Future Research Activity |
コンパクト等質空間上の不変なアインシュタイン計量の存在については、これまでの多くの研究は、等質空間の等方部分群による既約成分が同値でない場合であったが、同値な成分を持つ場合を考察する。より具体的には、コンパクト単純リー群上に、新しいアインシュタイン計量が存在するかを、一般化された旗多様体で、第2ベッチ数が2以上ものから定まる不変計量の中で考察する。これは特殊ユニタリー群 SU(N)上で行ってきた研究の手法が応用できると思われる。特に、古典型の単純コンパクトリー群に対して研究する。 コンパクト等質空間上の不変なアインシュタイン計量の非存在については、一般化された旗多様体から新しく定まる等質空間について考察する。これらの例については、2005年のBohm の方法は適用することはできないことは分かってきているが、Grayにより考察されたEinstein-like 計量の存在・非存在を示す方法が考えられる。GrayはEinstein計量の条件を弱めたもの、実際、リッチテンソルが、リッチ平行よりも弱い条件の持つ計量を提案している。こような性質を持つ不変な計量が存在するかどうかを調べる。
|
Causes of Carryover |
学会等の発表や研究連絡に、旅費を使用する予定であったが、新型コロナウイルス感染症の影響で、参加する予定であった国際研究集会に参加できなかった。このため、旅費としての支出が少なくなり次年度使用額が生じた。 学会等の研究集会および国際研究集会が、対面式で再開されるので、ギリシャで開催される国際研究集会、日本数学会が開催する学会や関係する研究集会などの旅費として使用する予定である。
|