2022 Fiscal Year Research-status Report
Complex analytic invariants on the moduli space of Riemann surfaces using super Riemann surfaces
Project/Area Number |
21K03239
|
Research Institution | Kisarazu National College of Technology |
Principal Investigator |
田所 勇樹 木更津工業高等専門学校, 基礎学系, 准教授 (10435414)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | リーマン面 / モジュライ空間 / 超リーマン面 / 位相的漸化式 / 周期 / 離散リーマン面 / 写像類群 / 反復積分 |
Outline of Annual Research Achievements |
リーマン面とは複素1次元多様体である.モジュライ空間とは,リーマン面全体を双正則同型により同一視した空間である.複素解析学,微分位相幾何学,代数幾何学,物理学など様々な分野において,重要な研究対象とされてきた.本研究の目的は,モジュライ空間の局所的な構造を定量的に理解することにある. モジュライ空間に対して自然に定まるヴェイユ・ピーターソン体積が満たす漸化式をミルザハニが発見し,その拡張として位相的漸化式が定まる.超リーマン面は超対称性をもったリーマン面の拡張であり,モジュライ空間上の積分である散乱振幅について,ある種の有限性を持つことが知られている.物理学者を中心に研究されてきたが,近年数学側からの研究も活発に行われている.離散リーマン面とは閉曲面上の埋め込まれたグラフに離散複素構造を導入したものであり,分割を細かくしていくと通常の複素構造に近づく. 本研究では,複素構造に依存して定まる周期,調和体積,調和的マグナス展開を,閉・離散・超リーマン面に対して求める.位相的漸化式を通じて,新たな複素解析不変量の導出を試みる. 本年度は,離散リーマン面上の離散指数関数の一般化に関する共同研究をオンラインで定期的に行った.また,組みひも群や曲面の3角形分割と関連する群に関する共同研究をオンラインで定期的に行った.以上の研究について,招待講演を含む研究集会において,口頭発表を行った.周期行列などのリーマン面のモジュライ空間上の複素解析的不変量に関する論文を精読した. 研究集会「リーマン面に関連する位相幾何学」をオンラインにより共同開催した.双曲幾何と数理物理に関する論文を精読する研究集会として,「ランダム曲面の幾何学入門」「タイヒミュラー空間の力学系入門」を共同開催した.
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
特別な離散リーマン面上の離散指数関数,および組みひも群や曲面の3角形分割と関連する群のアーベル化を導出することができた. また,研究集会「リーマン面に関連する位相幾何学」「ランダム曲面の幾何学入門」「タイヒミュラー空間の力学系入門」を共同開催し,充実した研究交流を実施できた. しかし,対称性の高いリーマン面の周期や調和体積を導出することができなかった.
|
Strategy for Future Research Activity |
対称性の高いリーマン面の周期行列の導出を足掛かりとして,離散リーマン面や超リーマン面における複素構造を深く理解し,いくつかの複素解析的不変量を求める.
|
Causes of Carryover |
対面での研究集会の参加・発表を一部取りやめたため. 未使用額については,論文執筆にかかる諸経費,研究成果発表の旅費,図書購入などに使用する予定である.
|
Research Products
(8 results)