2022 Fiscal Year Research-status Report
連続体理論とそのトポロジーにおける古典的問題およびグラフ理論への応用に関する研究
Project/Area Number |
21K03249
|
Research Institution | Shimane University |
Principal Investigator |
松橋 英市 島根大学, 学術研究院理工学系, 准教授 (60558518)
|
Project Period (FY) |
2021-04-01 – 2026-03-31
|
Keywords | refinable map |
Outline of Annual Research Achievements |
1. 昨年度投稿した論文「Some decomposable continua and Whitney levels of their hyperspaces」が国際数学雑誌Topology and its Applicationsに受理・出版された。本論文ではD**-連続体の概念を導入し、連続体が遺伝的に弧状連結であることと遺伝的にD**であることが同値であることを示し、また、連続体がWilderであること、Dであること、D*であることおよびD**であることがWhitneyの性質であることを示している。 2.1.に関連し、連続体がWilderであることがWhitneyの逆性質ではないことを示し、同結果を含んだ論文を現在執筆中である。 3. Refinable mapにより定義域の補連結性が保たれることを示した。しかしproximately refinable mapに関しては定義域の補連結性が保たれない例を定義域、終域ともにグラフで構成した。 4.京都大学数理解析研究所研究集会「集合論的および幾何学的トポロジーと関連分野への応用」(2022年6月6日(月)~6月8日(水) オンライン開催 (Zoom))の研究代表者を務めた。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
昨年度投稿した2編のうち1つの論文が受理され、もう1つも2023年度に入り受理された。また、現在新しい論文を執筆中である。
|
Strategy for Future Research Activity |
研究初年度に進展した弧を含まない遺伝的に分解可能な連続体に関して現在進行形で新しい結果が出ているので、まずそちらに注力したい。
|
Causes of Carryover |
コロナウイルス感染症による規制で出張が難しかったため。2023年度は海外出張の計画があるので、そちらの経費として使用予定。
|