2022 Fiscal Year Research-status Report
Project/Area Number |
21K03270
|
Research Institution | Kobe University |
Principal Investigator |
高山 信毅 神戸大学, 理学研究科, 教授 (30188099)
|
Project Period (FY) |
2021-04-01 – 2025-03-31
|
Keywords | 多変数超幾何関数 / Feynman積分 |
Outline of Annual Research Achievements |
Feynman摂動展開にあらわれる積分を次元正則化した一般化 Feynman 積分は GKZ 超幾何関数で表現できる. GKZ超幾何関数はholonomic系を満たしその方程式の具体形が知られているが, その方程式系に付随する全微分方程式系(Pfaffian方程式)の具体形は知られていない. さまざまな 1-loop diagram に付随する一般化 Feynman 積分のみたす全微分方程式(Pfaffian方程式)を効率的に求める手法---Macaulay matrix の方法を研究し, その実装およびアルゴリズムの詳細を説明した論文を公開した. この方法ではPfaffian方程式の係数行列成分の有理式が計算量の限界を超えてしまい計算できなくても評価したい点を与えれば係数行列の数値を決定できる. この方法は漸化式による値の計算や微分方程式の数値解法を適用した積分の計算にも利用できる. この方法を活用して統計に現れるGKZ系のcontiguity relation の生成, たとえば 4-cycle model の数値contiguity relation の導出をおこなった. GKZ系はパラメータを一般に設定してあるため扱いやすいholonomic系であるが, Feynman積分や統計の正規化定数ではこれらのパラメータが多様体上に制限される. GKZ系やより一般にholonomic系のパラメータを制限する確率算法を開発し, それにより rank が100以上のGKZ系でも制限計算が可能となった. たとえば double loop 0 mass モデルに対する Feynman 積分が満たすPfaffian方程式をこの制限計算アルゴリズムで導出した. またHornの超幾何系に対してその特異点である超曲面への制限の計算も可能になった. この制限を利用し超曲面の上の正則解の数値計算がうまくいくことを示した.
|
Current Status of Research Progress |
Current Status of Research Progress
1: Research has progressed more than it was originally planned.
Reason
holonomic系の制限を計算する確率算法を与えた. この手法は非常に効率的であり, 今まで計算ができなかったPfaffian方程式が導出可能となった.
|
Strategy for Future Research Activity |
昨年度の今後の予定として下記を挙げたが制限計算手法の研究が大きく進展したため, 下記の問題に取り組むことができなかった. 本年度は再びこの問題に取り組みたい. 申請時に挙げた問題3: 【接続公式の研究を大域的な数値計算に活かすこと】の研究を開始したい. また問題2を考察する仮定で Trefethen らが提案するチェビシェフ多項式を用いた微分方程式の近似解の計算はとても優れた方法であることを知った. この手法の多変数化も研究したい.
|
Causes of Carryover |
コロナ感染症対策の緩和により出張がある程度可能となったがいまだコロナ以前のようには出張ができなかった. 本年度は対面開催の研究集会にさらに参加し, 講演をする. また研究集会の予定もしているのでその旅費補助を行う.
|
Research Products
(5 results)