2023 Fiscal Year Final Research Report
Non-equilibrium dynamics of quantum order in strongly correlated electron system revealed by using ultrafast x-ray pulses
Project/Area Number |
21K03457
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 13030:Magnetism, superconductivity and strongly correlated systems-related
|
Research Institution | High Energy Accelerator Research Organization |
Principal Investigator |
Fukaya Ryo 大学共同利用機関法人高エネルギー加速器研究機構, 物質構造科学研究所, 特任助教 (30735072)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 光誘起相転移 / 強相関電子系 / 時間分解X線計測 / 超高速ダイナミクス / 光物性 / 磁性 |
Outline of Final Research Achievements |
To reveal the long-range ordered electronic and lattice structures in the non-equilibrium states that reflect physical properties of strongly correlated electron systems, we have conducted time-resolved X-ray diffraction and scattering measurements. These measurements utilized a combination of hard and soft X-ray pulses with femtosecond and picosecond durations, depending on the observed time scales and quantum degrees of freedom. By combining synchrotron radiation with a variable repetition rate laser system, we have implemented a time-resolved soft X-ray measurement system capable of measuring at a sampling frequency more than ten times higher than conventional systems. Furthermore, we clarified the overview of non-equilibrium dynamics in which photoexcitation triggers changes in the electronic state, leading to coherent modulation of the quantum ordered state coupled with the phonon, and subsequently developing into a macroscopic phase transition.
|
Free Research Field |
非平衡物質科学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で開発した高サンプリング周波数時間分解軟X線計測システムにより、従来のシステムでは微弱な信号で計測が困難であった物質系への適用が可能となり、対象物質や測定環境が大幅に拡大した。レーザーや放射光、X線自由電子レーザーの複合利用で解き明かされた、協同的に相互作用した量子自由度の非平衡ダイナミクスの新たな知見は、光パルスを利用した新規な超高速物性制御の手法や新規な動的機能性を有する物質の探索および創成に明確な指針を与えるだけでなく、その技術を利用した次世代超高速スイッチング通信デバイスの応用展開に向けて、飛躍的に研究開発が加速されると期待される。
|