2023 Fiscal Year Final Research Report
Research on the smart observation system with the automatic decision making for the follow-up observations of astronomical transients
Project/Area Number |
21K03616
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 16010:Astronomy-related
|
Research Institution | Hiroshima University |
Principal Investigator |
Uemura Makoto 広島大学, 宇宙科学センター, 准教授 (50403514)
|
Co-Investigator(Kenkyū-buntansha) |
加藤 太一 京都大学, 理学研究科, 助教 (20283591)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 光赤外線天文学 / 時間領域天文学 / データサイエンス |
Outline of Final Research Achievements |
The "Smart Kanata" autonomous observation system, developed for the "Kanata" telescope in Hiroshima University for the study of astronomical transients, particularly novae and dwarf novae, enables the acquisition of data immediately after explosions. This system incorporates machine learning for classifying newly discovered objects, information theory for making decisions on appropriate follow-up observations, and deep learning for tasks like weather assessment necessary for automated observations. By utilizing these cutting-edge technologies, the system has achieved automatic continuous imaging of dwarf novae and automatic spectroscopy of novae. In the case of dwarf novae, the evolution of the geometric structure of accretion disks has been elucidated for the first time, while in novae, observations have been made of the state just prior to the growth of the nova wind, after passing through the initial high-temperature phase.
|
Free Research Field |
天文学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は、従来、専門家の知識と経験と基づいた判断によって実施されてきた突発天体現象の追跡観測を、先端的な技術を駆使することで自動化したことに意義がある。特に、適切な判断をするために必要な情報が不十分な状態で、次に取得すべきデータを確率論的に意思決定する仕組みは、他の様々な計測分野でも有用だろう。天文学的には、開発したシステムによって期待通りに初期成果が得られ、質量降着と放出の物理に新たなデータを提供できたことに意義がある。
|