• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Modeling of mantle dynamics based on neural networks

Research Project

  • PDF
Project/Area Number 21K03714
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 17040:Solid earth sciences-related
Research InstitutionThe University of Tokyo

Principal Investigator

Morishige Manabu  東京大学, 地震研究所, 助教 (70746544)

Project Period (FY) 2021-04-01 – 2024-03-31
Keywordsニューラルネットワーク / マントルダイナミクス / 熱対流 / 熱伝導
Outline of Final Research Achievements

This study investigates the applicability of Physics-Informed Neural Networks (PINN), a recently proposed method which is based on neural networks, to the prediction of spatiotemporal variations in temperature and rock velocity inside the Earth. I have tested various formulations and ways to incorporate boundary conditions, and found it difficult to predict the results even for relatively simple problems using PINN at this stage.

Free Research Field

地球ダイナミクス

Academic Significance and Societal Importance of the Research Achievements

近年発表された偏微分方程式を解くための新たな手法 Physics-Informed Neural Networks (以後PINNと呼ぶ)は、従来の数値計算手法と比較して、解が不連続になる問題や時間逆行問題に対しても適用が容易であるなどの理由で注目されてきた。しかし本研究では、PINNを用いて地球内部における温度や岩石流動の時空間変化を精度良く予測することはまだ現段階では難しいということを明らかにした。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi