• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Low-Energy Atomization Control Techniques for NOx Reduction and CO2 Absorption/Capture in Exhaust Gases

Research Project

  • PDF
Project/Area Number 21K03902
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 19020:Thermal engineering-related
Research InstitutionTokai University

Principal Investigator

Nohara Tetsuo  東海大学, 総合科学技術研究所, 研究員 (40718186)

Co-Investigator(Kenkyū-buntansha) 落合 成行  東海大学, 工学部, 教授 (40407995)
高橋 俊  東海大学, 工学部, 准教授 (60553930)
Project Period (FY) 2021-04-01 – 2024-03-31
KeywordsNOx低減/CO2吸収・回収 / 尿素SCRシステム / 表面微細加工 / 液滴微粒化 / PIV-DDM+データ同化 / 可視化システム / 気液混相流 / AI液滴認識
Outline of Final Research Achievements

We constructed an experimental apparatus for the reproducible visualization of exhaust gas flow and temperature ranges. Using a high-speed camera, we clarified the gas-liquid multiphase flow and the atomization of spray droplets within the exhaust gas, phenomena scarcely reported in the literature. Based on these experimental data, we developed a novel calculation method using model reduction, aided by AI for droplet recognition, to reproduce droplet behavior and predict outcomes under various conditions.
Furthermore, we developed impact plates with micro-texture surface processing to control the atomization of urea-water solution for NOx reduction and CO2 absorption liquids impingement. We obtained new correlations between We number, the degree of atomization, and the occurrence of the Leidenfrost phenomenon for various hole diameters, depths, and temperatures on the textured surface. Finally, we observed results concerning the CO2 absorption rate using new CO2 absorption methods.

Free Research Field

熱工学

Academic Significance and Societal Importance of the Research Achievements

排ガス内でのミクロ~マイクロ秒での噴霧液滴の微粒化度合いや気液混相状態の把握により,排気管内でのトラブル解消や,気液混相流の新たな計算手法(PIV-DDM:粒子画像流速測定+離散液滴法)解析の開発にて通常のCFDとは違う低コスト・小時間での解析方法が期待される.
更にハスの葉表面にヒントを得た様々なディンプル形状等の表面微細加工による特殊テクスチャープレートの開発にて,尿素水やCO2吸収液を噴霧衝突させる衝突板にそれらを施した際に,噴霧エネルギーを追加せずに通常の未加工板に衝突させるよりも微粒化(=表面積増加)促進や排ガス流内の均一化にも貢献すると考える.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi