2023 Fiscal Year Final Research Report
Three-Dimensional Hydrogen Production Current Distribution in a Cathode-Supported Honeycomb Solid Oxide Electrolysis Cell
Project/Area Number |
21K03916
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | Kyushu University |
Principal Investigator |
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 水素生成 / 水蒸気電解 / 固体酸化物形電解セル / ハニカム形多孔質陰極支持体 / 三次元電流分布 / 三次元濃度分布 / 三次元温度分布 |
Outline of Final Research Achievements |
We have developed a honeycomb (monolithic) electrolytic cell with a larger reactive area for unit volume than the conventional planar and tubular cells. The volumetric density of the fuel production rate can be significantly improved, leading to the development of compact and high-performance steam electrolysis systems. This study addresses hydrogen production by steam electrolysis using an SOEC with a porous honeycomb cathode support of Ni-YSZ. Current-voltage curves were measured, and we thereby developed and validated a three-dimensional finite element model to clarify the current and temperature distributions that are useful for the optimal design of practical monolithic cells.
|
Free Research Field |
電気化学,熱工学,燃料電池システム,水電解システム
|
Academic Significance and Societal Importance of the Research Achievements |
二酸化炭素などの温室効果ガスや大気汚染物質の排出低減のため,太陽光や風力などの再生可能エネルギーによる発電で得られる電力を利用した,水の電気分解による水素製造技術が注目されている.多孔質燃料極を支持体とするハニカム固体酸化物形電解セルは,反応物である水蒸気のマクロな三次元的拡散によって,水の電気分解における電気化学反応場が拡張し,電解装置のコンパクト化や水素製造の高効率化・省エネ効果が期待できる.さらに,従来の平板型電解セルに比べ熱機械的強度の向上が期待でき,耐久性向上も見込めることから,今後の再生可能エネルギー利用の普及につながる.
|