• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Constructive approach to neural basis for predictive control of gait and posture

Research Project

  • PDF
Project/Area Number 21K03932
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 20010:Mechanics and mechatronics-related
Research InstitutionThe University of Electro-Communications

Principal Investigator

Funato Tetsuro  電気通信大学, 大学院情報理工学研究科, 准教授 (40512869)

Co-Investigator(Kenkyū-buntansha) 柳原 大  東京大学, 大学院総合文化研究科, 教授 (90252725)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywordsモデル予測制御 / 予期的姿勢調節 / 姿勢制御 / 小脳
Outline of Final Research Achievements

The study aimed to elucidate the mechanisms of movement control based on state prediction exhibited by humans and animals. We hypothesized that the neural control system is structured based on model predictive control and tested this through predictive experiments and mathematical simulations with both humans and rats. In human experiments, predictive movements were observed when disturbances were introduced after a cue, and simulations using model predictive control showed behaviors consistent with these predictive movements. Furthermore, similar predictive experiments in rats revealed that the predictive movements seen in healthy rats were absent in cerebellum-injured rats. These results suggest that control laws similar to model predictive control are utilized by the nervous system, including the cerebellum, in generating movements.

Free Research Field

システム工学、制御工学、バイオメカニクス

Academic Significance and Societal Importance of the Research Achievements

本研究の学術的意義は、予測制御メカニズムと神経系の関係を明らかにした点にある。ヒトの実験では、モデル予測制御がヒトの予測動作を説明できることが示され、小脳障害ラットの実験では、小脳の予測制御における役割が明らかになった。これにより、モデル予測制御の理論が神経制御に適用可能であることが示唆された。本研究の成果は、ヒトの動作制御の原理を人工物に応用する有効な知見となるとともに、小脳に障害を持つ患者の運動障害メカニズムに知見を与えるものである。これにより障害メカニズムに基づく効果的な診断とリハビリテーションにつながることが期待できる。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi