• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Gas-liquid interfacial phenomena induced by pulsed discharge on the water surface using highly controlled high voltage burst pulses

Research Project

  • PDF
Project/Area Number 21K03994
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 21010:Power engineering-related
Research InstitutionIwate University

Principal Investigator

Takahashi Katsuyuki  岩手大学, 理工学部, 准教授 (00763153)

Co-Investigator(Kenkyū-buntansha) 高木 浩一  岩手大学, 理工学部, 教授 (00216615)
竹内 希  東京工業大学, 工学院, 准教授 (80467018)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywords水面上パルス放電 / パルスパワー / 非熱平衡プラズマ / ラジカル / イオン / 気液界面
Outline of Final Research Achievements

Pulsed discharges on the water surface have been promised as a technology can be applied to various application fields. In this study, the influence of the pulsed discharges on the water surface on the gas-liquid interfacial reaction field was investigated by observing the development of the consecutive pulse discharges. The first and second discharges propagate along the same path and the development of the second pulse discharge is enhanced by the increasing gas temperature and the excited gas molecules caused by the first discharge. This phenomenon is observed when the interval time between the pulses is less than 20 μs. The discharge length of the second pulse is shorter than that of the first pulse with an interval time from 20 μs to several ms. The charges on the water surface reduce the electric field, which suppress the development of the second pulse discharge. The discharge length in the case of negative pulse is shorter than that of positive pulse.

Free Research Field

電気電子工学

Academic Significance and Societal Importance of the Research Achievements

独自のバーストパルス電圧を発生可能なパルスパワーシステムを構築し利用することによって、放電の進展と液中化学反応において極めて重要となる気液界面反応場における、放電現象と化学反応の相互作用を解明できるだけはなく、反応の高度制御と最適化によって応用技術におけるラジカル反応効率の飛躍的な向上を実現できるとの着想に至った。本研究により、いまだ解明されていない、複雑な気液界面反応場における物理・化学現象の振る舞いを体系的に明らかにすることが可能となり、革新的な学際融合連携技術の確立につながる

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi