2023 Fiscal Year Final Research Report
Practical Study of Nonlinear System Identification in the Frequency Domain
Project/Area Number |
21K04112
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 21040:Control and system engineering-related
|
Research Institution | Keio University |
Principal Investigator |
Adachi Shuichi 慶應義塾大学, 理工学部(矢上), 教授 (40222624)
|
Co-Investigator(Kenkyū-buntansha) |
丸田 一郎 京都大学, 工学研究科, 准教授 (20625511)
川口 貴弘 群馬大学, 大学院理工学府, 助教 (00869844)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 非線形システム同定 / 深層学習 / 周波数 / 制御 / モデル縮約 |
Outline of Final Research Achievements |
There are nonlinear dynamic systems where the application of machine learning in AI has not been adequately explored. This study aims to propose a new model reduction method for the identification problem of the nonlinear dynamic systems. In this research, a method was proposed to construct deep neural networks (DNNs) capable of switching computational loads in a single learning process, and its effectiveness was confirmed through numerical examples. Additionally, new insights were gained by interpreting problems studied in machine learning within the framework of control theory.
|
Free Research Field |
制御工学
|
Academic Significance and Societal Importance of the Research Achievements |
現在活発に研究されているAIの分野の機械学習は,制御理論の分野では非線形システム同定に対応する.二つの分野の共通点が多いにも関わらず,それらの融合研究は進んでいない.本研究では,制御理論の視点から機械学習を考察することにより,さまざまな知見を得ることができた.また,申請者が長年研究を進めてきた,本研究に関連するシステム同定の著書をまとめており,その社会的意義は大きいと思われる.
|