• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Studies on superconducting field-effect transistors with multi-gate structures

Research Project

  • PDF
Project/Area Number 21K04145
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 21050:Electric and electronic materials-related
Research InstitutionNational Institute for Materials Science

Principal Investigator

TACHIKI Minoru  国立研究開発法人物質・材料研究機構, ナノアーキテクトニクス材料研究センター, 主幹研究員 (50318838)

Co-Investigator(Kenkyū-buntansha) 大井 修一  国立研究開発法人物質・材料研究機構, 国際ナノアーキテクトニクス研究拠点, 主任研究員 (10354292)
川原田 洋  早稲田大学, 理工学術院, 教授 (90161380)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywords超伝導 / 電界効果トランジスタ / ダイヤモンド / 銅酸化物 / 磁気光学顕微鏡 / 磁束量子
Outline of Final Research Achievements

Diamond field-effect transistors(FETs) using boron-doped superconducting diamond as the source and drain electrode and a two-dimensional hole gas (2DHG) as a channel was fabricated, and the modulation effect of the drain current by the gate voltage was demonstrated at low temperatures. We have also succeeded in direct gate modulation of the superconducting current of a superconducting diamond channel FET. Superconducting Bi2212 ultrathin film was made by cleaving method, dilute hydrochloric acid treatment method, and PLD deposition method. In order to observe the vortex behavior, which is necessary for understanding the operation of superconducting transistors, we developed a magneto-optical thin-film sensor and succeeded in developing a magneto-optical microscope system that can observe the motion of a single vortex in real time.

Free Research Field

超伝導

Academic Significance and Societal Importance of the Research Achievements

超伝導ソース-ドレイン電極および2次元半導体チャネルをすべてダイヤモンドで構成された、近接効果型ダイヤモンド電界効果トランジスタ(FET)の変調動作を極低温で確認できたことや、超伝導体チャネルの超伝導電流を直接ゲートで変調する直接変調型ダイヤモンド超伝導FETの動作のデモンストレーションができたことによって、低炭素社会へ向けて、低損失なエネルギー活用に資する将来の超伝導FET開発に対する意義は大きい。また、単一磁束量子レベル分解能の動的観察が可能な磁気光学顕微鏡システムを開発したことで、超伝導デバイスや超伝導線材などの評価と改善に役立たせることができると考えられる。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi