• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Machine Learning to Estimat the Behavior of a Batch Process

Research Project

  • PDF
Project/Area Number 21K04766
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 27020:Chemical reaction and process system engineering-related
Research InstitutionTokyo University of Agriculture and Technology

Principal Investigator

Yamashita Yoshiyuki  東京農工大学, 工学(系)研究科(研究院), 教授 (60200698)

Project Period (FY) 2021-04-01 – 2024-03-31
Keywordsプロセスモニタリング / バッチプロセス / 化学プラント / 機械学習 / モデル化
Outline of Final Research Achievements

Batch plants are used in the chemical and pharmaceutical industries. They are important for quality control, efficiency improvement, and optimization. Recently, data-driven modeling techniques have been used to achieve these objectives. However, batch plants often produce many different products in small quantities, which makes it difficult to construct models with sufficient accuracy. We developed a data-driven method that can create highly accurate models with limited data. It uses data from different batches, including data from different products.

Free Research Field

プロセスシステム工学

Academic Significance and Societal Importance of the Research Achievements

この研究はデータ駆動型機械学習を発展し,学習データの不足という問題を解決する新たなアプローチを提案しています.この手法は、少量のデータからも高精度な予測モデルを構築可能とし,機械学習の理論と実践のギャップを埋める学術的意義の高いものです.
社会的には,この研究成果は化学産業や製薬産業におけるバッチプラントの生産性や効率,品質,安全性を向上させることに直接寄与します.エネルギー消費の削減や原料の使用効率を高め,環境負荷の軽減にも繋がります.また,作業員のリスクを減少させ,より持続可能な製造業の実現を支援します.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi