2023 Fiscal Year Final Research Report
Investigation on Activity Enhancement of Porous Coordination Polymer Photocatalysts Based on Thermally-Assisted Photochemical Processes
Project/Area Number |
21K05231
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 36010:Inorganic compounds and inorganic materials chemistry-related
|
Research Institution | Osaka Metropolitan University (2022-2023) Osaka Prefecture University (2021) |
Principal Investigator |
Horiuchi Yu 大阪公立大学, 大学院工学研究科, 准教授 (90611418)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 多孔性金属錯体 / 多孔性配位高分子 / 可視光応答型光触媒 / 欠陥制御 / 水素製造 |
Outline of Final Research Achievements |
In this research, new material design for porous coordination polymer (PCP) photocatalysts based on thermally-assisted photochemical processes has been investigated. Simultaneous light irradiation and mild heating for an amine-functionalized Ti-based PCP (Ti-PCP-NH2) led to the elimination of a part of the organic linkers while keeping its porous framework. The thus-obtained defective Ti-PCP-NH2 showed much higher photoactivity for visible light-driven hydrogen evolution reaction than the parent one without linker defects. Applying mild heating during the photocatalytic reaction was also able to improve activity of Ti-PCP-NH2, which would be due to the in-situ formation of dangling bond. Moreover, photodeposition of Pt cocatalysts during the photocatalytic reaction with mild heating resulted in the effective enhancement of photoactivity ofTi-PCP-NH2. All these results showed the linker defect engineering by photothermal treatment is effective way to design PCP photocatalysts.
|
Free Research Field |
触媒化学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、多孔性金属錯体(PCP)の特徴に基づき、多孔性骨格のフレキシブル性を利用することで、PCP材料内での新規な光触媒反応サイトの創出手法と助触媒固定化手法の開発に成功した。これらは、太陽光水素製造プロセスの根幹を担う高効率光触媒を設計する上での重要技術と言え、現在のエネルギー・環境問題の解決を前進させる研究成果である。加えて、本技術は、吸着サイトの創出が重要となるガス吸着材、ガス分離材を始めとする他の機能性材料の設計にも応用可能であり、多岐の分野の発展に貢献しうる研究成果である。
|