• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Predicting symptom severity in viroid-infected plants using the viroid genome sequence

Research Project

  • PDF
Project/Area Number 21K05608
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 39040:Plant protection science-related
Research InstitutionNational Agriculture and Food Research Organization

Principal Investigator

Matsushita Yosuke  国立研究開発法人農業・食品産業技術総合研究機構, 植物防疫研究部門, チーム長 (00414665)

Co-Investigator(Kenkyū-buntansha) 孫 建強  国立研究開発法人農業・食品産業技術総合研究機構, 農業情報研究センター, 主任研究員 (90838624)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywordsウイロイド / 病徴予測 / ゲノム / ジャガイモやせいもウイロイド / トマト / RNAサイレンシング / アルゴリズム
Outline of Final Research Achievements

Viroids induce symptoms of varying severity, ranging from latent to severe, based on the combination of viroid isolates and host plant species. P Here, we developed an algorithm using unsupervised machine learning to predict the severity of disease symptoms caused by potato spindle tuber viroid (PSTVd) in tomato. This algorithm, mimicking the RNA-silencing mechanism thought to be linked to viroid pathogenicity, requires only the genome sequences of the viroids and host plants. It involves three steps: alignment of synthetic short sequences of the viroids to the host plant genome, calculation of the alignment coverage, and clustering of the viroids based on coverage using UMAP and DBSCAN. Validation through inoculation experiments confirmed the effectiveness of the algorithm in predicting the severity of disease symptoms induced by viroids. As the algorithm only requires the genome sequence data, it may be applied to any viroid and plant combination.

Free Research Field

植物病理学

Academic Significance and Societal Importance of the Research Achievements

本研究で開発したアルゴリズムは、データベースで公開されているウイロイドのゲノム情報と宿主植物であるトマトのゲノム情報を利用し、ウイロイドが感染した時に生じる短い塩基をコンピュータ計算で予測し、学習データを利用してウイロイドの病原性を予測できる。将来的には、本アルゴリズムを利用して、トマト以外の様々な重要作物とウイロイドの組み合わせに対し、ウイロイトが感染した時の病徴レベルを予測することが可能となることが期待される。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi