• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Development of AI for the drug therapy of hepatocellular carcinoma using medical image and immunogenomics

Research Project

  • PDF
Project/Area Number 21K07184
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 50020:Tumor diagnostics and therapeutics-related
Research InstitutionKindai University

Principal Investigator

Nishida Naoshi  近畿大学, 医学部, 教授 (60281755)

Co-Investigator(Kenkyū-buntansha) 目加田 慶人  中京大学, 工学部, 教授 (00282377)
Project Period (FY) 2021-04-01 – 2024-03-31
Keywords肝細胞癌 / 薬物療法 / 人工知能 / 医用画像 / 腫瘍免疫微小環境 / 免疫チェックポイント阻害剤 / ドライバー変異 / 遺伝子変異
Outline of Final Research Achievements

We developed an AI to predict the efficacy of immune checkpoint inhibitors (ICIs) for hepatocellular carcinoma (HCC). 154 HCC tissues were used to classify tumors based on mutation, histopathology and imaging information. Using scores generated by CD8+ lymphocytes, PD-L1, and β-catenin activation, progression-free survival for PD-1 antibody treatment was successfully stratified in test cohort.Another model was also developed to predict disease control by lenvatinib using imaging information. Radiomics features were extracted from CT, and compared to the LightGBM model, the neural network (NN) model showed better performance with the average correct response rate was 0.58. To further improve accuracy, we used the mutual information as a measure of the relevance of features to create a better model with fewer features. As a result, the GLSZM (Gray Level Size Zone Matrix), a radiomics feature, was particularly useful for discrimination with better performance.

Free Research Field

消化器内科

Academic Significance and Societal Importance of the Research Achievements

肝細胞癌(以下肝癌)は本邦のがんの部位別死亡率で5位を占め、その治療法の確立は社会的に重要な問題である。現在、肝癌の1次治療薬として、チロシンキナーゼ阻害剤が2種、複合免疫療法が2種承認されている。しかし、これらの薬物療法においては有効なバイオマーカーがなく、治療薬は医師の経験に基づき選択されている。本研究成果は肝癌の治療における反応性を病理、遺伝子、画像から予測するのものであり、これにより、無駄な治療を避け、患者の生活の質を向上させることが期待できる。さらに治療前にその効果の予測ができれば、肝癌治療の個別化医療の実現に向けた一歩となり得る。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi