2023 Fiscal Year Final Research Report
Development of a new sudden cardiac death prediction support technology using a 12-lead ECG generation model
Project/Area Number |
21K08140
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 53020:Cardiology-related
|
Research Institution | Fujita Health University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
寺本 篤司 名城大学, 情報工学部, 教授 (00513780)
祖父江 嘉洋 藤田医科大学, 医学部, 准教授 (20724793)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 心臓突然死 / 心電図 / 人工知能 / 敵対的生成ネットワーク / リスク層別化 |
Outline of Final Research Achievements |
Many sudden cardiac deaths occur due to hemodynamic collapse caused by fatal tachyarrhythmia. In cases where the patient survives cardiopulmonary resuscitation, an implantable cardioverter defibrillator (ICD) is implanted as a secondary prevention of sudden cardiac death, but the damage caused by the electric shock treatment is significant. In addition, the similar device is implanted as a primary prevention in high-risk groups for sudden cardiac death, such as those with low cardiac function or hereditary arrhythmia, but there is no accurate risk stratification method based on electrocardiograms. In this study, we aimed to develop a novel technology to predict the risk of sudden cardiac death by converting the electrocardiograms of sudden cardiac death cases into normal electrocardiograms using a generative adversarial network (GAN), and then detecting and evaluating the difference between the electrocardiogram before conversion and the normal electrocardiogram.
|
Free Research Field |
循環器内科
|
Academic Significance and Societal Importance of the Research Achievements |
わが国では年間約8万例の心臓突然死が発生する。12誘導心電図は心臓病の診断や病態評価に重要な役割を果たすが、ハイリスク症例を特定する目的で詳細に検討されることは少ない。今回は心臓突然死例と正常例の12誘導心電図の間で敵対的生成ネットワークを用いて、互いの心電図を再生成することで、2者の心電図波形の相違性を明らかにして突然死ハイリスク心電図の特徴を明らかにすることを目的とした。心電図検査の際に、このアルゴリズムを使用することにより心臓突然死ハイリスク例の検出を行い、生命予後を改善したいと考えている。
|